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We present a model construction method based on a local fitting of polynomial func-
tions to noisy data and building the entire model as a union of regions explained by such
polynomial functions. Local fitting is shown to reduce to solving a polynomial eigenvalue
problem where the matrix coefficients are data covariance and approximated noise co-
variance matrices that capture distortion effects by noise. By defining the asymmetric
distance between two points as the projection of one onto the function fitted to the
neighborhood of the other, we use a best weighted cut method to find a proper parti-
tioning of the entire set of data into feasible regions. Finally, the partitions are refined
using a modified version of a k-planes algorithm.
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1. Introduction

Many scientific fields, including computer vision, pattern recognition, data mining
or system identification, involve problems where data is to be modeled by multiple
subspaces. Even though the amount or dimensionality of the data may be large,
the subspaces typically have few dimensions and admit a simple structure. Several
algorithms exist that can tackle the so-called (multi-)subspace clustering or hybrid
linear modeling problem, where the objective is to build a model where each par-
tition of the data is captured by a linear relationship and the entire model is a
composition of these partitions. Not every data set, however, admits a decomposi-
tion into linear relationships, and applying linear methods to essentially nonlinear
relationships possibly by means of some smoothing approach loses the simplicity
and explanation power of these methods. A natural generalization of subspace clus-
tering is (multi-)manifold clustering, where each curved manifold is captured by
some nonlinear relationship.

We discuss an approach to the clustering problem where each partition is char-
acterized not by a line or plane but a polynomial, or more restrictively, a quadratic
curve or surface, formulated in their implicit form f(x, 8) = 0, or in more general,
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not by a subspace but by a curved manifold. This involves a nonlinear estimation
problem for each cluster. A simple but computationally efficient approach to deal
with this estimation problem is to transform it into a linear setting. In two dimen-
sions, for instance, the three components x, y and the constant term, is transformed
into 6-component version with x2, zy, y2, z, y and the constant term, allowing us
to express quadratic curves with a linear relationship 6'f(x) = 0 where 6 en-
capsulates the coefficients of 22, zy, ¥2, =, ¥y and the constant term, respectively.
Unfortunately, such transformation distorts any noise that may be present in = or
y in a nonlinear manner, which must be duly accounted for, or simple algebraic
estimation methods might produce suboptimal results.

Once an effective estimation method is in our hands that can fit simple polyno-
mial functions to data without incurring too much computational overhead, we may
obtain parameter estimates for any locality where points are related by the same
function. Based on the assumption that a neighborhood that is sufficiently large to
give reliable estimates but sufficiently small that all points in the neighborhood are
similar in terms of how they are related, we define an asymmetric distance mea-
sure between two points as the distance from one point to its projection onto the
manifold estimated from the neighborhood of the other point. The asymmetric dis-
tance measure produces an asymmetric distance matrix of the pairwise asymmetric
distance between any two points.

Spectral clustering methods can find decomposition of data using spectral prop-
erties of the distance matrix. Given the matrix is not symmetric as typically ex-
pected, we use a modified spectral method that can exploit the asymmetry in the
problem. The method splits the entire data set into k clusters, where each cluster
is (ideally) characterized by the same implicit polynomial relationship. The out-
put may then be refined with iterative approaches in the spirit of k-planes (k-flats),
where estimation and assignment steps alternate until an acceptable decomposition
of the data set is found.

The proposed method is robust, capable of handling intersections and data near
boundaries, and adapts to more substantial levels of Gaussian noise.

The outline of the rest of the paper is as follows. Section [2| surveys related
work, both fitting nonlinear functions to (a single cluster of) data as well as multi-
subspace clustering of data, two fields that our work can be seen as a combination
of. Section [3| discusses our contributions, elaborating on each step of our algorithm.
Section [4] demonstrates how our algorithm works with some simple but illuminating
examples and Section [5| concludes the paper.

2. Related work

Estimating parameters of a linear system where all data points are related by
the same function but polluted by Gaussian noise with a known structure is the
well-understood and widely-used method of total least squares fitting 1, solved
as either an eigenvalue problem or a computationally more robust singular value
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problem, which yields maximum likelihood estimates. Here, we seek to maximize
the probability

1 1 _
p(x; |0, x0,) = —— exp (-2 (xi — XO,i)T C,,)zi (x; — XO,i)>
/(2% det G,

over the parameter vector @ and all (unknown) data points x¢ ;, with (observed)
data points x; and noise covariance matrix Cgz (available up to scale) at our
disposal. While tackled relatively easily for the linear case, the nonlinear case poses

difficulty with the exploding number of unknowns. Generalizations of this single-
cluster linear problem to the nonlinear case exist, both iterative and non-iterative
algorithms, which may no longer achieve optimality but nevertheless can deliver
accurate and consistent estimates.

Among fitting algorithms, methods based on maximum likelihood (ML) are re-
garded as the most accurate, and they attain the theoretical accuracy bound called
the Kanatani-Cramer-Rao lower bound up to high-order error terms ¥, The key to
approximated maximum likelihood estimation (AML) Z, one of the various compu-
tational schemes that have been proposed, is to formulate the probability function
in an alternative way and substitute functions of unobservable noise-free variables
with their approximations obtained from available noisy components. While the
reformulated objective function depends on the unknown quantities x¢ ;, once sub-
stituted with x;, we get an iterative scheme that can produce parameter estimates
in a few iterations.

Non-iterative schemes, even if not strictly optimal 18, can still deliver accurate
estimates, and avoid any possibility of divergence inherent to iterative algorithms,
especially in the presence of high levels of noise. The nonlinear extension to the
Koopmans method 22 or the consistent algebraic least squares estimator 2%22 in
contrast, are more reminiscent of the total least squares scheme, and try to match
the data covariance matrix with the theoretical noise covariance matrix. Like with
AML, the noise covariance matrix depends on xg ;, which are unknown, but can
be approximated with x;, which are available. The nonlinear Koopmans method,
for instance, reduces to a polynomial eigenvalue problem once the noise covariance
matrix has been approximated, whereas a regular eigenvalue problem lies at the
heart of total least squares.

On the other hand, many approaches exist that approximate a data set with a
spline-like approach or some other weighting scheme where the model arises as a
set of basis functions and associated weights. The approach may be geometrically
motivated whereby approximation is interpreted as a continuous evolution process
that drives an initial surface towards the target specified by the data points 2,
or be a moving least squares variant where each data point is associated with
a support region and has a local surface estimate, and these local estimates are
blended together with a weighting matrix 4. Other methods use a decomposition
scheme to split the entire domain to suitably small domains that can be fit with

a simple function ?® or merged to form larger clusters based on the inter-cluster
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distance and intra-cluster distance criteria %2, These methods, however, typically do
not aid in understanding the data by finding a natural decomposition that reflects
the internal model from which data originate.

In contrast, partitioning the entire data set into clusters where points within
the cluster are related in the same way whereas different clusters are captured by
different relationships can identify internal structure. Beyond the simple case when
the cluster is represented by a single point, such as k-means, work on partitioning
data has been focusing on subspace clustering or hybrid linear modeling algorithms
where clusters are assumed to be related in a linear manner. These approaches
include k-flats (KF) and its variants 2 generalized principal component analysis
(GPCA) 31 local subspace affinity (LSA), random sample consensus (RANSAC)
for hybrid linear modeling, agglomerative lossy compression (ALC) Y spectral
curvature clustering (SCC) ¥, sparse subspace clustering (SSC) 1% and (spectral)
local best-fit flats (S/LBF) #3. An overview of such algorithms is given in 5%

Extensions of hybrid linear modeling algorithms exist that are not limited to
clusters with intra-cluster data related in a linear manner. Nonlinear manifold clus-
tering methods include locally linear manifold clustering (LLMC) 42 manifold clus-
tering with node-weighted multidimensional scaling 27, kernel spectral curvature
clustering (KSCC) % and mixture of probabilistic principal surfaces (MiPPS) 4.
Many of these are based on minimizing a cost function involving an affine combina-
tion of all points with different weights, or expectation maximization with general
basis or kernel functions, shifting focus towards discovering the clusters rather than
understanding the structure of the clusters themselves. A common characteristic is
that the cluster definition is implicit (captured by some arrangement of data, e.g.
closeness to a cluster center) rather than explicit (present in the data itself, e.g.
explained by the equation of an ellipse).

Our interest has been motivated by an effective method 23, which uses spectral
clustering for partitioning data into multiple linear subspaces. Extending its results
to the nonlinear case, our goal has been to alloy estimation methods for the single-
cluster scenario with clustering schemes used in the multi-cluster but linear setting.
Previous work of ours LSO has focused on discovering polynomial patterns in
data via a generalization of the k-planes approach, which could easily get stuck in
local minima as it depended on the choice of an arbitrary initial state chosen with-
out much prior information. This work provides a more robust approach with the
initial state chosen using spectral clustering, and is a multi-cluster curved manifold
clustering method of its own right.

3. Modeling with polynomial fitting

The main idea of our contribution is replacing linear subspace fitting with fitting
curved manifolds, described by polynomial functions. Conceptually, our method is
a spectral clustering algorithm with a specialized distance matrix measuring the
distance of a point and its projection onto a curved manifold, which has been
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(1) for each data point x;

a) start with an initial neighborhood N (x;) around x;
) estimate the parameters 6 that best capture points in N (x;)
(c) enlarge N(x;) by adding nearest-neighbor points
) compute new estimates 6 and compare them to the estimates 6_1 obtained
in the previous iteration
(e) repeat until the neighborhood N (x;) cannot be enlarged without worsening
the accuracy of @y
(f) let Oxr(x,) be the best @) that belongs to the optimum A (x;) around x;

(2) for each pair of data points x; and x;, obtain their asymmetric distances

(a) project x; to the manifold parametrized by 6 N(x;) and calculate a;;
(b) project x; to the manifold parametrized by @xr(x,) and calculate a;;

(3) perform spectral clustering

(a) build a matrix of asymmetric distances
(b) assign data points to groups based on the distance matrix eigenvectors

Fig. 1: The pseudo-code of the proposed algorithm.

estimated from a local neighborhood. As such, the inputs of the algorithm are as
follows:

X data set, n rows, N columns
number of dimensions (2 for plane, 3 for space)

n

N number of data points

Y. the n x n noise covariance matrix
k

the desired number of clusters

Each column of the data set matrix X is a data point x;'— = [xi yi] for 2
T = [:cz Yi zz] for 3 dimensions, and the covariance matrix 3 =
E (ili;r) where the data point x; is split into a noise-free part and a noise part
as X; = X; 0 + X; where neither can be observed directly. As output, the algorithm
produces a mapping (a membership set) Z between data points, and one of the k
clusters. Data points x; in the same cluster are captured by the same polynomial

dimensions or x

)

function. Thus, the method constructs a model as a union of polynomial functions
fitted to data. The pseudo-code of the algorithm is shown in Figure
The algorithm can be broken down into the following sub-problems:

(1) Fitting polynomial surfaces to data. This is accomplished with the nonlinear
Koopmans (NK) method “?, which can be seen as an alternative formulation of
consistent algebraic least squares 2%22, The method solves a polynomial eigen-
value problem, the matrix coefficients being the data covariance matrix and
noise cancellation terms. The data covariance matrix is computed from the
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data x; subject to the non-linear transformation f(x;), and the noise cancella-
tion terms mitigate the effect of this transformation on noise. The approach is
not optimal in a maximum likelihood sense but nevertheless consistent: more
data produces better estimates.

Identifying local neighborhoods. Any estimation method requires sufficient data
to produce reliable parameter estimates, especially in the presence of noise. In
most cases, the local neighborhood of a data point consists of other points that
are related in a similar way, or in other words, captured by the same polynomial
function. This is implicit in many multi-manifold clustering algorithms but is
made explicit in our approach: points in a local neighborhood determine a
fitting, and the fitting is deemed to apply in that neighborhood. Choosing
the right neighborhood can be accomplished with an inflationary algorithm
involving k,,, nearest neighbors, where k,, is an increasingly larger number
until a suitable error measure begins to increase rather than decline.
Projecting a point onto a curved manifold. While projecting to a subspace
can be easily accomplished, projecting to a curved manifold captured by a
polynomial function is computationally more intensive. Efficient methods that
compute the so-called foot point of a data point that does not lie on the curved
manifold are essential to the algorithm. Special cases for projecting to ellipses
and ellipsoids, and quadratic curves and surfaces will be discussed. Projection
onto a manifold lets us determine the distance between a point and its foot
point where the parameters of the curved manifold on which the foot point lies
have been estimated from a local neighborhood.

Spectral clustering using an asymmetric distance matrix. A clustering method
by weighted cuts in directed graphs will be employed to find a partitioning
of the entire data set into disjoint clusters, exploiting the asymmetry in the
distance matrix. The method is based on a generalization of the original spectral
approach involving symmetric matrices. The asymmetric distance matrix stems
from curved manifolds estimated around the local neighborhood of points, and
projecting all (typically other) points onto this manifold, and measuring the
distance between point and its foot point. Spectral clustering reveals points
that naturally group together, i.e. groups of points that are captured by the
same polynomial relationship, which is what we ultimately seek.

Figure [2) illustrates some of the sub-problems that comprise the steps of the al-

gorithm. Sub-figure [2a] shows how the estimation algorithm fits an ellipse to a noisy

set

of data and how the local neighborhood is enlarged until the greatest possible

number of data points is used to estimate the parameters of an ellipse; observe how
the neighborhood is no longer extended once the fitting error begins to increase.
The filled square marker indicates the point from which neighborhood detection
starts, empty square markers around dots indicate neighborhood membership of
data points. Sub-figure 2B shows how the asymmetric distance, which is the basis

for

spectral clustering, acts as a measure of point proximity, i.e. whether the points
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(a) local neighborhood detection (b) proximity based on data projection

Fig. 2: Sub-problems that comprise our proposed algorithm.

belong to the same group. The filled triangle and the filled square marker indicate
points that are close even though their Euclidean distance is relatively large. The
continuous line shows the ellipse estimated from the points that form the neigh-
borhood of the data point with the filled triangle marker, whereas the dashed line
depicts the ellipse that belongs to the neighborhood of the point with the filled
rectangle marker. Both the triangle marker point projected to the dashed line el-
lipse and the square marker point to the the continuous line ellipse yield foot points
that are relatively near to their originals, producing a small asymmetric distance
measure.

3.1. Parameter estimation

For the purposes of parameter estimation, we assume that the data has zero mean
and has been normalized to its root mean square (RMS), which is meant to reduce
numerical errors. (The estimation algorithm, as presented here, is not invariant to
translation and scaling.) For each dimension x of the data set X, this means

1 N
my = Nzll'z
i=

Ty — My
T; & —
S

Ox
Oy < —
S

and likewise for all other dimensions y, z, etc. where

n

s = %Z{(mi—mI)QJr(yi—my)ZJr...}

1=

Reducing data spread also reduces the additive noise on components of x; and the
noise covariance matrix X is updated accordingly. Thereafter, we assume data is
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polluted by Gaussian noise with covariance X.
The objective of the parameter estimation step is to find parameters g such that

f(xi0,8) =0 (1)

where x; o is a vector of noise-free components that can be observed only via their
noisy counterparts x; = X;0 + X; with 2 =1, ..., N with IV being the number of
observations, X; is a noise contribution with X; ~ N(0, X) where ¥ = diag (o-i)

and o2 is a vector of variances for each component of an X;. o2 is assumed to be

X
known up to scale (multiplication by a constant). The noise covariance matrix X
is (in general) of full rank: there is no distinguished variable that we can observe
noise-free, usually called an errors-in-variables approach in statistics. Furthermore,

we rewrite in a form
£ (x0,1)0 =0 2)

where the function f : R™ — R™ is a (so-called) carrier function that maps the
data vector xg; € R" into m-dimensional space. In other words, once we substitute
zo,; = f(x0;), the relationship simplifies into a (pseudo-)linear relationship

Z(Iﬂ:()

that splits the expression into data and parameters. In particular, quadratic curves
can be captured with

z; = [2? zy; y? @y 1]

and quadratic surfaces can be captured with

where x;, y; and z; are data point coordinates in two or three dimensions.

The estimation method resembles total least squares 14 in that it matches the
data covariance matrix with the conceptual noise covariance matrix. The under-
lying assumption is that were it not for the noise present in observations x;, the
data covariance matrix would be a singular matrix due to . Thus, finding the
eigenvector of the data covariance matrix with respect to a noise covariance matrix
with the smallest-magnitude eigenvalue, parameter estimates can be found 22420522

Arranging z; = f(x;) in a (mean-free) matrix Z where each row is a data point,
and setting D = %ZTZ, we have a data covariance matrix D of noise-contaminated
observations. Next, we find the smallest-magnitude (positive real) eigenvalue p in
the polynomial eigenvalue problem (PEP)

T(1)0 = (D — C(1)) 6 = 0

in which C(u) is a polynomial in the scalar p, meant to cancel noise effects, with
matrix polynomial coefficients to be derived below. As the matrix D is of full rank,



Modeling by fitting a union of polynomial functions to data 9

the null space of D — C(u) yields the parameter vector 8 (up to scale, which we
normalize to ||@]| = 1). p = 0 expresses a physical constraint that noise magnitude
cannot be negative.

The key point is to express the covariance matrix C. The original noise co-
variance matrix X is no longer valid in the transformed space, hence data points
and the carrier function must be used to estimate C. If f is a polynomial function,
C = C(x, 02) can be approximated in a series of simple steps, and written as a ma-
trix polynomial in y if o2 is expressed as 02 = po2 (with u being “magnitude” and
o2 “direction”) where H&iH = 1. Let w; be an arbitrary component in z; and its
noise contribution w; be normally distributed with variance o2. The relationships
to use are as follows:

o E(w!) = E{(wo; +w;)"}: an observed quantity is split into an unobserved
quantity and noise.
o E (u??p ) = 02P(2p — 1)!!: even central moments of the normally distributed
variable w (where !! stands for double factorial).
o E (ﬁ;?p _1) = 0: odd central moments of the normally distributed variable w.
e E(w;)mw=+ Zivzl wy: expected value is approximated with mean.
For example, C for estimating parameters of a quadratic curve will take the form
C(n) = p?Cy 4 pCy where Cy is a matrix whose entries depend on o2 and o7,
while those of C; depend on o2 and 012/ as well as E (m2), E (yQ), E (zy), E (z) and
E (y), all of which are approximated from finite samples.

Let us, for instance, consider expressing the top left entry of the matrix poly-
nomial C(p) = E (2,2, ) with data linearized as

%

zT:[xzxyyzxyl]

where we have dropped the index 7 in x; and y; for brevity. Here, we seek E { (x2)2},
for which

E{(*)’} =E(s*) =E (w0 + )’
=E (z§ + 4237 + 6233° + 4z07° + &%)

where E (4z3%) = 423K (&) = 0 and E (4z3%) = 4a0FE (2%) = 0 (expected value of
odd central moment equals zero), yielding

E (z*) = E (x5 + 6253”4 &)

where E (52) =02 and E (;E4) = 302 (expected value of even central moment) such
that

E (2*) = 25 + 62502 + 30;.
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This gives
E (334) —x) = 62202 + 302
=602 (E (2?) — 02) + 307
= 60°E (zZ) — 302

x
where E (z2) = E (23 + #%) = 2 + E (&%) = 2% + 02 and thus 23 = E (2?) — 2.
Notice how the expression finally reduces to components that depend on either the
original noise covariance matrix 3 such as 02 and 0%, and components that can be
approximated from observed samples E (ac2) R~ % > z2.
Iteratively applying the substitution technique above, we arrive at a special case
of a PEP, called a quadratic eigenvalue problem (QEP)

U(1) = (D — uCy — pi°Cs) 6

for estimating quadratic curves and surfaces, which involves a C(u) with at most
a quadratic dependence on pu.
One way to solve the QEP

¥(p)0 = (D—-C(n)8=0

is to apply linearization, thereby eliminating the polynomial dependence on p at
the expense of increasing the size of coefficient matrices, which is analogous to
companion matrices constructed from polynomials where the eigenvector of the
companion matrix yields the roots of the polynomial. In particular, transformations
that preserve symmetry are especially favored for their numerical stability.

A well-known result 28 for linearizing the QEP

M2R2 + uR1 + Ry
is with the first companion form
- _ - 0 W W 0
E(N) =B, — AS, = [RO Rl] A [ ) RZ]

where the choice for the (arbitrary full-rank) W = —Ry yields a generalized eigen-
value problem with symmetric matrices where the eigenvector w has a special struc-

w:m.

In our case of quadratic curves and surfaces, the substitutions are

ture

Ry =D
R1:C1
R, =C,



Modeling by fitting a union of polynomial functions to data 11
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Fig. 3: Comparing the accuracy of direct ellipse fit (dotted line), hyperaccurate
ellipse fit (dashed line) and the estimation method used in this paper (dash dot
line). Both hyperaccurate ellipse fit and the method used in this paper are equally
close to the original curve (continuous line) from which data has been sampled
whereas direct ellipse fit exhibits a significant low-eccentricity bias. Data points
(shown as dots) are contaminated with noise.

Solving the resulting generalized eigenvalue problem is the linearized equivalent
of solving the original polynomial eigenvalue problem. As the linearized problem has
eigenvectors w of dimension mp rather than m, the true polynomial eigenvector that
belongs to the eigenvalue u becomes the column v of vecV = w of the linearized
eigenvector 21w = A\Eow that gives the smallest normalized residual, i.e.

v = argminM
v 2o [Vl

where [v], is the kth component of the vector v.

Comparison with other estimation methods Given the simplicity of tradi-
tional least squares estimators and the accuracy of maximum likelihood-based es-
timators, the near-optimality of iterative approaches and the inherent bias present
in non-iterative approaches, we give some arguments for our choice of the fitting
algorithm.

First, the algorithm we use is non-iterative, and such fitting methods fail to
achieve the Kanatani—Cramer—Rao lower bound, the theoretical bound for accu-
racy 8. However, the estimation method we employ is used in an unsupervised
classification setting where we must simultaneously optimize two different but in-
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terdependent aspects: identification of groups and estimation accuracy within the
group. Provable statistical bounds for optimal algorithms are applicable insofar that
we assume perfect clustering, and as such, accuracy loses significance when data
in a group may not in reality belong to the same group. Furthermore, iterations
required for non-linear optimization may often make the algorithm not converge in
the presence of large noise (or specifically, a large degree of misclassification). The
robustness and reduction in complexity we gain is sizable and comes at a price of
only slightly compromised accuracy.

Second, non-iterative algorithms exist that outperform the algorithm used in
this paper in one respect or other, e.g. hyperaccurate quadratic curve fitting 18
completely cancels second-order error. The estimation algorithm we use, however,
yields similar results but comes at a modest computational cost, i.e. amounts to
solving a generalized eigenvalue problem, whereas e.g. hyperaccurate fitting requires
the computation of several matrix pseudo-inverses in addition. Both algorithms far
outperform traditional least squares, which has a substantial low-eccentricity bias.

Figure [3] compares three estimation methods: a least-squares-based approach
called direct ellipse fit "' (shown with dotted line), hyperaccurate ellipse fit &
(shown with dashed line) and the estimation based on a noise compensation ap-
proach we use in this paper (shown with dash dot line). In Figure |3} 250 original
data points sampled evenly along an ellipse (continuous line) are contaminated with
Gaussian noise of o5 = 0.1 (plotted as black dots). The original ellipse that has gen-
erated the data points has center (12,13), semi-axes lengths of 4 and 2, and angle
of tilt &. It can be seen how the estimator we use can achieve an accuracy strikingly
similar to that of hyperaccurate ellipse fit, while substantially outperforming direct
ellipse fit.

3.2. Finding the optimal local neighborhood

Parameter estimation can produce a curve or surface that captures all related points
in a curved manifold if the proper set of input data is identified. Assuming that
points are surrounded by other related data points, a finite neighborhood of any
(or most) data points can produce a good estimate valid around that data point.
Should the neighborhood grow too large, unrelated data points may fall into the
neighborhood and the parameter estimates will be seriously distorted. The key of
finding the optimal neighborhood is adding as many nearest neighbors to a data
points as possible without negatively impacting estimation quality.
Let us introduce the following notation:

X; the point whose neighborhood to determine

N(x;)  the neighborhood set of x; (in Euclidean sense)

Nj(x;)  the neighborhood set of x; comprising of k nearest neighbors
Xn(x;) @ matrix of points in the neighborhood of x;

The input to the algorithm to find the optimal local neighborhood is as follows:
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k  initial number of k-nearest neighbors
s  k-nearest neighbor increment

As output, the algorithm yields N(x;), with the largest number of points that
still guarantees that the points are captured by the same polynomial relationship.

The optimal neighborhood for each data point is thus determined by finding the
neighborhood that minimizes the error measure

i
eS| ®)

where p solves the polynomial eigenvalue problem
(D — ,uC1 — /,LZCQ) 0
which is the objective function of the estimator we use with

1
D= fo—l\—f(xi)xj\[(xi)'
The numerator of measures the goodness-of-fit assuming a neighborhood mem-
bership NV (x;) and the denominator of penalizes smaller sets and encourages
the neighborhood to expand until it engulfs outliers or unrelated data points.

Minimizing is most easily accomplished with an inflation algorithm: starting
with an initial number of k nearest neighbors, s new nearest neighbors are added
each turn and the polynomial eigenvalue problem is solved for u. The size of the
neighborhood will be determined by the optimal p as compared to the number of
points in the neighborhood.

As an outcome of neighborhood discovery, points that are “inside” a curve or
surface section are assigned parameter estimates drawn from a large neighborhood,
whereas points near the edges or intersections (where many neighboring points
originate from another group) have less reliable parameter estimates but also a
far smaller neighborhood. Given that estimates belonging to points with larger
neighborhoods are more consistent with estimates derived from points in the vicinity
(e.g. as is the case when points are on the same stretch of homogeneous surface),
these neighborhoods will dominate other neighborhoods in the spectral clustering
phase of the algorithm.

3.3. Projection

A key point in our clustering algorithm is defining the distance between any two
points as the distance of one point x; from its foot point xy; such that

x7; = argmin [x - x;[*

A foot point is thus the projection of a point to a surface. In previous sections, we
have seen how to estimate parameters of a surface from a set of points and how to
find the optimal number of neighboring points to get surface parameter estimates.
However, finding the projection of a point to the surface has remained an open
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issue. Depending on the surface, various projection schemes can be devised; we
discuss the special cases of projecting to a linear or a quadratic surface.

In order to simplify discussion, we assume that noise is equally distributed across
all dimensions of the data points x; and thus the Euclidean distance is a valid
distance measure. Otherwise, we may apply a scaling transformation involving the
noise covariance matrix X such that points x; < 2_%)@ satisfy this assumption.

3.3.1. Projection for linear data functions

When linear estimation is used, the foot point is calculated as a simple point—line
or point-plane distance. Let n be the normalized line or plane normal vector and ¢
the constant in the Hessian normal form equation of the plane

Lixf)=n-x;+c=0

such that 87 = [nT c} up to scaling by a constant. In such a case, the (signed)
distance between the point and the line or plane is given by the projection

d=n-x; +c.

3.3.2. Projection for quadratic data functions

When quadratic estimation is used, obtaining the foot point is not as straightfor-
ward 8. A quadratic curve in two dimensions or a quadric surface in three dimensions
can be recast in the form

Q(xy) :x;AforbTforc:O (4)
where A is a symmetric matrix such that
0" = |symvec(A)" bT c}

where symvec (A) stacks the upper triangular part of the matrix A including the
main diagonal into a column vector. Geometrically, the closest point xy on the
surface to x must satisfy the condition that x — x; is normal to the surface. Since
the surface gradient VQ(xy) is normal to the surface, the algebraic condition for
the closest point is

x —xf =tVQ(xs) = t(2Axs + b)

for some scalar ¢. Therefore, x; = (I + 2tA)~!(x — tb) where I is the identity
matrix.

Instead of immediately replacing x in the quadratic equation, factor A using
an eigendecomposition to obtain A = RDRT where R is an orthonormal matrix
whose columns and D is a diagonal matrix whose diagonal entries are eigenvectors
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and eigenvalues of A, respectively. Then
x; = (I+2tA)"!(x — tb)

= (RR" +2tRDR")"}(x — tb)

= {R(I+2D)R"}" (x - tb)

=R(I+2tD) ' (a—tp)
where

a=R'x pB=R'b.
Re-substituting into the quadratic equation ,
0= (at8)" (I+2tD)"'D(I+ 2tD) " (a—1p)
+ B +2tD) Y(a—tB) + ¢

which is an at most fourth-degree polynomial for two dimensions, and an at most

sixth-degree polynomial for three dimensions in terms of the scalar variable t. Once
the roots t; are found, they can be substituted into

Xfk = (I + 2tkA)_1(X - tkb)

where the xy j that produces the smallest distance yields the foot point we seek.

3.3.3. Projection to an ellipse or ellipsoid

Finding the foot points can be simplified further if the type of the quadratic curve
or surface can be identified or constrained. As an important special case, consider
assignment to an ellipse (or ellipsoid); algorithms for other quadratic curves can be
derived in a similar manner . Without loss of generality, we can assume the ellipse
(or ellipsoid) is axis-aligned and centered at the origin. If not, a transformation
matrix M that axis-aligns and centers the ellipse can be applied to the data points,
and the inverse transformation matrix M ! to the computed foot points. We discuss
projection to ellipses but the approach generalizes to ellipsoids with the addition
of the extra dimension. Thus,

372 y2
Quxp) =L+ 5 —1=0. (5)

For the distance between a data point [x y] and a foot point [xf yf] to be min-
imum, the distance vector must be normal to the ellipse, which means that the
ellipse gradient vector

1
§axQ(Xf) = [% zif]
and the distance vector should be equal up to magnitude. This implies (after rear-
rangements) that
a‘x _ b2y
A
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where t is a scalar. Substituted into yields
1 a2z \? 1 b2y 2
== (—— = ~1
Q) a? (t+a2) * b? (t+b2)

_ ar 2+ by 2 1—0
- \t+a? t+ b2 -

Differentiating w.r.t. t we get

d 2a%22 2b2y?

—Qt) = - n3 e
dt (t+a2)”  (t+0?)
d 6a’z? 6b272
—0O(t) = +
dt2Q( ) (t +a2)4 (t +62)4

where £Q(t) < 0 and ;5 Q(t) > 0 (strictly monotonic decreasing) in the domain
of interest and

A Q) = o
Am @) =1

therefore a unique root ¢ of Q(t) must exist. One way to find this root is using
Newton’s method .

3.4. Spectral clustering

Identifying the optimal neighborhood around each point, and estimating parameters
of the associated local model, we can project any data point to the estimated surface.
Iterating over all data points yields an asymmetric distance matrix A p whose entry
a;; represents the distance of data point x; from its foot point obtained by projecting
x; onto the surface around x;, defined by parameters O (x,), i.e.

aj; =d (Xiv p (QN(xj)7 Xi))

where d denotes Euclidean distance and p (8, x;) denotes the projection of the point
x; to the curve or surface defined by 6, and O,/(x,) are the parameters of the curve
or surface estimated from the set of points A (x;), which is the local neighborhood
of X

One approach to identifying groups in a data set with a notion of distance matrix
is spectral clustering %24 Spectral clustering is initialized with a (symmetric)
scatter matrix Sg (where the subscript S stands for symmetric) with entries s;;
between 0 and 1, not at all similar and most similar, respectively. A straightforward
way to convert a distance matrix into a scatter matrix is via the exponential function
with a negative exponent.

Once we have a scatter matrix Sg, we may proceed as follows:
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e Normalize the scatter matrix Sg. Let
1

di = ———
Zj [Ss]ij
and Dg = diag (d;) such that

Hg =I - DsSsDg

e Compute the smallest eigenvectors of the matrix Hg = UAU " where

U  matrix of eigenvectors

u; the ith smallest eigenvector

U the bottom k smallest eigenvectors uy, ug, ... arranged in a matrix
A;  the ith smallest eigenvalue

A a diagonal matrix of the bottom k& smallest eigenvalues Ay, Ao, ...

1
e Perform a k-means clustering on UypA, *. The clusters are the result of the
spectral clustering algorithm.

This approach, however, requires a symmetric scatter matrix to initialize, which

Ss = exp (—oq/ABAD>

where the operators exp () and /e are to be understood element-wise and o > 0

may be obtained as

is a scalar parameter.

Unfortunately, such an approach destroys any asymmetry present in the original
problem and may produce largely suboptimal results. Asymmetric spectral cluster-
ing, an algorithm to find a best cut in a weighted graph 23, remedies the issue by
procrastinating enforcing symmetry to a later phase of the algorithm. Let S4 be
a(n asymmetric) matrix (where the subscript A stands for asymmetric) initialized
with entries s;; between 0 and 1, not at all similar and most similar, respectively.
The steps of the algorithm are as follows:

e Normalize the matrix S4. Let

1
di = | e
Zj [SAL‘]‘
and D4 = diag (d;) such that
1 T
Hy=1- §DA(SA+SA)DA

e Compute the smallest eigenvectors of the scatter matrix Hy = UAUT where
U is a matrix of eigenvectors and a A is a diagonal matrix of eigenvalues.
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e Normalize the rows of Uy to unit length. Uy is a matrix of the bottom k&
smallest eigenvectors with uy, use, ... arranged in a matrix.
e Perform a k-means clustering on normalized Uy,.

The algorithm allows us to start with an asymmetric distance matrix such as

Sa = exp(—aAp)

where the operator exp (e) is to be understood element-wise and « > 0 is a scalar
parameter.

Note that even while asymmetric spectral clustering also starts with a symmetric
matrix S4+S ), the normalization matrix D 4 is computed based on the asymmetric
matrix S 4, unlike (symmetric) spectral clustering where the normalization Dg is
based on the already symmetric Sg. The row index ¢ of the matrix S represents
data points and the column index j represents estimated curves or surfaces, and
the entry [Sal;;
of the estimated curve or surface j. The normalization D4 makes all data points
cast unit support in favor of the total number of estimated curves and surfaces, and
the asymmetric clustering tends to avoid separating the data point from the curve
or surface it has large support for.

can be interpreted as a support weight of the data point ¢ in favor

3.5. Polynomzial grouping

Once a spectral clustering of data is available, we may use it to seed an algorithm
with potentially higher accuracy but higher sensitivity to the initial state. An algo-
rithm in flavor of k-planes using the nonlinear Koopmans method 22 or consistent
algebraic least squares 2922 for estimation and Euclidean distance for projection
can be used to refine both data point grouping and parameter estimates.

The steps of the algorithm 1217 which resemble standard k-means, alternate
as follows:

e FEstimation. For each cluster, we find the best-fit surface that minimizes p in
the nonlinear estimator (in the manner discussed in Section .

e Projection. For each data point, we find the closest surface that minimizes the
distance between the data point and its foot point on the surface (in the manner
discussed in Section .

Only after a few iterations, the algorithm has converged to its final state with no
data points re-grouped from one cluster to another.

4. Examples

As with hybrid linear modeling, the difficulty of the problem lies with intersecting
and overlapping data sets. Here, we demonstrate the robustness of the algorithm
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Fig. 4: Cluster assignments on some artificial data sets.

with some artificial data sets that illustrate how the proposed algorithm can tackle
these cases.

Figure [ illustrates cluster outcomes when the algorithm is executed on various
artificial data sets used in“, either with no noise (data points along five intersecting
circles in Figure [fa] and data points along a circle, an ellipse, a parabola and a
hyperbola in Figure or low noise level (three intersecting spheres in Figure .

Figure |5a) shows the “petal” data set, with data points arranged along elliptical
leaves with no data points in the central region. The points are contaminated with
a noise of o = 0.125 along both axes x and y, see Figure The different stages of
the algorithm are illustrated in Figures [5c and Figure [5d shows the data point
grouping discovered by spectral clustering where the asymmetric distance matrix
has been constructed such that it measures the distance of each point from its foot
point, while Figure shows how an extended version of k-planes clustering can
refine the groups such that the shapes that capture the data almost match the
originals the data has been generated from.

Figures [6a] and [6D] show how other algorithms fare with the same data set. The
K-manifolds algorithm “” ran with default options and was set to look for four
one-dimensional manifolds where each manifold would correspond to an ellipse.
The cluster assignment in Figure [6a] reveals how the K-manifolds algorithm fails
to capture the presence of four distinct shapes and tends towards treating the
entire data set as a whole, splitting the data set in a rather arbitrary way. This
highlights a major strength of our algorithm, namely that it can not only group data
points but also identify the relationship that explains them, which helps produce
more insightful groupings. The weakness of the K-manifolds algorithm lies with the
junctions where it fails to detect the discontinuity (i.e. split data points between the
two ellipses involved). Similar results are obtained with Kernel Spectral Curvature
Clustering (KSCC) #5, which are shown in Figure[6b} As a kernel function, we used
the standard quadratic polynomial kernel k(x, y) = (x, y) + (x?, y?) where the
operator 2 is to be understood element-wise and (e, ) stands for dot product.

The noise-resilience of the algorithm and its robustness against uneven distri-
bution of samples is demonstrated in Figures [7a] [7b] [7d and [7d] which show the
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-4

(c) spectral clustering (d) modified k-planes clustering

Fig. 5: Grouping data points arranged along quadratic curves with the curves in-
tersecting and the groups slightly overlapping.
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(a) K-manifolds algorithm (b) Kernel Spectral Curvature Clustering

Fig. 6: Cluster assignments by other algorithms executed on the same data set.
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(¢) o =04 (d) o =0.5

Fig. 7: Robustness of the algorithm in response to increasing level of noise.

outcome of the spectral clustering phase with increasing levels of noise contami-
nating the original data set, ¢ = 0.25, ¢ = 0.3 and o = 0.5, respectively. The
distribution of data points is not even: points in the top right quadrant are twice
as numerous as points in the bottom left quadrant, while the other two quadrants
have approximately equal number of points. Even with substantial noise, when the
points themselves hardly lie along ellipses any more, the algorithm is able to identify
the four different shapes, albeit with worse precision.

5. Conclusions

We have presented a hybrid nonlinear manifold clustering method to build a model
of clusters where intra-cluster data points are related by linear or quadratic func-
tions. The key points of the method are parameter estimation based on data and
noise covariance matrices with noise covariance matrix estimated from data, data
point projection to linear and quadratic surfaces, and spectral clustering based on
an asymmetric distance matrix. The method can tackle disjoint and intersecting
data sets, and is capable of not only finding data clusters but also captures the
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underlying relationship that explains data in a cluster.
Future work includes extending the method to higher-order functions, automat-
ically identifying the number of clusters and reducing computational complexity.
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