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join.me characteristics

Application deployed to several platforms
 Windows, Mac, Android, 105, etc.

Native Ul that looks natural
« Utilizes native functionality exposed by the platform

Common functionality in a single library shared across platforms

 Encapsulates application logic for sharing a screen or window,
scheduling a meeting, using audio and video, etc.
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Simplified architectural outline

Common library

Back-end services
screen share, audio/video, user account management, etc.
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C++ as the choice of language

Cross-platform

* Integrates into Windows, Mac, Android, iOS, etc. (with appropriate
wrappers)

Speeds up development
 Develop and maintain a single code base, deploy to several platforms
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Porting the join.me common library to
HTML5
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Motivation for HTML5

Join a meeting with a “single click” on the website
« /ero deployment

Universal browser support
 No special plug-ins needed for things to work out of the box
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Preliminaries regarding common library

Large existing code base in C++
Frequent use of idioms and patterns very specific to C++

Code meant to be deployed to several platforms
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Our principal problem:

Browsers run JavaScript, not C++
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Some consequences

Large existing code base in C++
« Use a fully (or at least mostly) automated procedure

Frequent use of idioms and patterns very specific to C++

« Migrate code in a way that “eats everything”

—  truly multi-paradigm: our library code covers several fields including scheduling,
low-level data manipulation, managing application state, notifications, etc.

— modern C++ features like lambdas, auto, decltype, move semantics, etc.

Code meant to be deployed to several platforms

 Avoid introducing platform-specific behavior
— if possible, no #if defined( ... )
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Ingredients for our recipe

Compiles arbitrary C++ source code
 generates and operates on low-level primitives

Generates cross-browser compiled code
 no browser-specific dependencies

Does not sacrifice efficiency
« compiled code is fast, only cross-interface calls are relatively expensive
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Our solution:

emscripten with embind
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emscripten

Emscripten is an LLVM-based project that compiles C and C++ into
highly-optimizable JavaScript in asm.js format. This lets you run C

and C++ on the web at near-native speed, without plugins.
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emscripten toolchain
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Why emscripten?

Compiles arbitrary C++ code

« compiles advanced C++11 features our common library uses (emscripten is
based on C++11 conforming clang compiler)

« compatible with any programming paradigm
 bidirectional interface with JavaScript (call JS in C++, call C++in JS)
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Why emscripten?

Generates portable code, no browser-specific dependencies

« compiled code runs in a (sandboxed) pseudo-virtual machine

— fixed-size (16 MB) memory for stack, heap and static data allocated in JavaScript
memory area

— no special add-on binaries or browser plug-ins required (“no-download” common library)
« external context (e.g. window) wrapped in C++ functions

— C++ standard library libc implemented in JavaScript (e.g. printf writes to browser
console)

— JavaScript environment is almost totally opaque to C++
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Why emscripten?

Compiled code is fast, only cross-interface calls are expensive

o C++ optimization technigues apply
— LLVM optimization for C++ source code
— advanced C++ optimization carry over to JavaScript domain (for free)
* harness high-efficiency techniques in JavaScript
— compiled code runs in asm.js mode
— memory model implemented with fast JavaScript typed arrays (Uint8Array)

* relatively little data passes C++/JavaScript boundary
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Interesting design challenges

or

the join.me common library under the hood illustrated with two case studies
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More (or less) common programming techniques
applied in the join.me common library

Task-based parallelism
e cross-thread communication with execution queues
e asynchronous operation scheduling

Extensive use of callbacks in continuation passing style

 what to do next is wrapped in a callback in C++, passed to and called
from external code but executed in C++

* error-handling with status codes and state change, not exceptions

Abstract classes with virtual functions act as interfaces
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Typical code sample from join.me

auto self = shared from this();
UpdateEarlyAccess(reason, [self, sessionDesc, reason](
bool didTriggerUpdate, ICommonToUI::ErrorCode errorCodeForLaunchpad) {

if (didTriggerUpdate) {
return;

}

LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI::OpReset, ..., sessionDesc, ...);

/] ...
self->m_State = STATE_ON_LAUNCHPAD;

})s
})s
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Continuation passing style

UpdateEarlyAccess [self, sessionDesc, reason](
bool didTriggerUpdate, ICommonToUI::ErrorCode errorCodeForLaunchpad) {

if (didTriggerUpdate) {
return;

}

LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI::OpReset, ..., sessionDesc, ...);

/] ...
self->m_State = STATE_ON_LAUNCHPAD;

})s

LOQMG@ © 2015, LogMeln, Inc.
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Cross-thread communication with queues

LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI::OpReset, ..., sessionDesc, ...);

/] ...
self->m_State = STATE_ON_LAUNCHPAD;

})s

LogMe@ © 2015, LogMeln, Inc.
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Error handling with status codes and state

auto self = shared from this();
UpdateEarlyAccess(reason, [self, sessionDesc, reason](
bool didTriggerUpdate, ICommonToUl::ErrorCode errorCodeForlLaunchpad) {

if (didTriggerUpdate) {

return;
}
LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI::OpReset, ..., sessionDesc, ...);
/] ...
self->m_State = STATE _ON_LAUNCHPAD;
1)

1)
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Abstract classes with virtual functions

auto self = shared from this();
UpdateEarlyAccess(reason, [self, sessionDesc, reason](
bool didTriggerUpdate, ICommonToUI::ErrorCode errorCodeForLaunchpad) {

if (didTriggerUpdate) {
return;

¥

LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI::OpReset, ..., sessionDesc, ...);
/] ...
self->m _State = STATE_ON_LAUNCHPAD;
1)
});
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Case study 1

Task-based parallelism
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Task-based parallelism
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Typical code sample from join.me

LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI: :OpReset, ..., sessionDesc, ...);

/] ...
self->m _State = STATE_ON_ LAUNCHPAD;

})s

» statement does not block, returns immediately
« operation is posted on execution queue
» callback is invoked when operation is scheduled

LogMe@ © 2015, LogMeln, Inc.
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Our C++ library vs. JavaScript

e asynchronous * asynchronous
 uses callbacks  uses callbacks
* supports timed operations * supports timed operations
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Our C++ library vs. JavaScript

» native hosts are multi-threaded  JavaScript is single-threaded (global
(parallel execution) execution order)

* native implementations use lock- * browsers have their own scheduler
free queues (setTimeout and setinterval)

* synchronous operations are e synchronous operations are not
supported supported
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Our C++ library vs. JavaScript

Implementation
* assign the same global thread to all execution contexts in JavaScript

e use a special-purpose queue for JavaScript exposed over our asynchronous
object interface
— SendOp(...) uses window.setimmediate(fn)
— SendDelayedOp(...) uses window.set Timeout(fn, delay)

* re-write all synchronous operations in our common library as asynchronous
operations to be compatible with JavaScript paradigm

End result: full transparency
* N0 need to be aware whether we target a native platform or HTML5
» uses most efficient task scheduling available on the target platform
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Case study 2

Communicating over external
Interfaces
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Traditional OO interface vs. JavaScript

e exposes interface with virtual * No true interfaces or virtual
functions functions (uses prototyping instead)
* mixes value types and (ownership- » only value types and ownership-
retaining) reference (pointer) types lgnorant reference types
— int, enum, std::string — string
— T& — object

— std::shared _ptr<T>
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Interacting with OO interface from JS

1) Call a common library operation from JavaScript front-end
a JavaScript function must be able to call a member function implemented in C++

2) Implement a library interface in JavaScript front-end

a C++ member function must be able to call a JavaScript function bound to an object

cross-language inheritance at work: JavaScript “derives” from C++ class (e.g. TCP socket
interface in common library implemented with web sockets in browser)
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Interacting with OO interface from JS

1) Call a common library operation from JavaScript front-end

a JavaScript function must be able to call a member function implemented in C++
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(1) Call a library operation in C++ from JavaScript
front-end

(1.1) Expose C++
operation in library to

JavaScript front-end (1.2) Invoke C++
operation in library from

JavaScript front-end
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(1.1) Expose library operation in C++ to JS

e expose class type by registering a unique name with em::class_(...)
 add binding using emscripten method .function() to register signature

* use embind utility functions in common to help with type mapping, e.g.
UTF-8 strings

LOgMG@ © 2015, LogMeln, Inc. 40



(1.1) Expose library operation in C++ to JS

em::class <IUIToCommon>("IUIToCommon")
.smart_ptr<std::shared ptr<IUIToCommon>>("IUIToCommonSPtr")
.function("OpPresenterSwitch Initiate",
EMBIND METHOD(IUIToCommon: :OpPresenterSwitch Initiate))
.function("OpPresenterSwitch Cancel"”,
EMBIND METHOD(IUIToCommon: :0OpPresenterSwitch Cancel))

LogMe@ © 2015, LogMeln, Inc.
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(1.1) Expose library operation in C++ to JS
“Dark magic” inside

template<typename MemberFunctionType, MemberFunctionType memberFunction, typename ReturnType,
typename ClassType, typename... Args>
struct MethodInvoker {
static ReturnType invoke(ClassType& obj, typename TypeTransformer<Args>::type... args) {
return (obj.*memberFunction)(reverse transform_argument<Args>(args)...);
}
¥

template<typename MemberFunctionType, MemberFunctionType memberFunction, typename ReturnType,
typename ClassType, typename... Args>

constexpr auto wrap_method(ReturnType(ClassType::*)(Args...)) -> ReturnType(*)(ClassType&, typename

TypeTransformer<Args>::type...)

{
}

return &ethodInvoker<MemberFunctionType, memberFunction, ReturnType, ClassType, Args...>::invoke;

#define EMBIND_ METHOD(method) wrap_method<decltype(&method),&method>(&method)

LogMe@ © 2015, LogMeln, Inc.
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(1.1) Expose parameter types and callbacks in C++
to JS

add binding for function parameter types with em::class (...)

add binding for properties of newly registered types with .propertyl...),
field(...)

add binding for new callback function signatures (unique globally, no aliases)
add binding for enumerations (both new- and old-style enums)
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(1.1) Expose parameter types and callbacks in C++
to JS

em::value object<Point>("Point")
.field("x", &Point::x)
.field("y", &Point::y)

typedef std::function<void(ErrorCode)> Callback;

em: :class <ITCPSocket::Callback>("TCPCallback")
.constructor<const ITCPSocket::Callback&>()
.function("Invoke", &ITCPSocket::Callback::operator())
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(1.2) Invoke library operation in C++ from JS

» use global object Module to access C++ class as a prototype
» use keyword new to instantiate an object
» use the instance almost as a regular JavaScript object
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(1.2) Invoke library operation in C++ from JS

AsyncConnect: function (address, port, bufferSize, callback) {

var address = 'wss://' + address + ':' + port + '/endpoint';
var connectCallback = new Module.TCPCallback(callback);
var socket = new WebSocket(address);
socket.binaryType = 'arraybuffer';
socket.onopen = function () {
connectCallback.Invoke(9);
connectCallback.delete();
connectCallback = null;

}s
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(1.2) Invoke library operation in C++ from JS

callback

var connectCallback = new Module.TCPCallback(callback);

connectCallback.Invoke(9);
connectCallback.delete();
connectCallback = null;
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Interacting with OO interface from JS

2) Implement a library interface in JavaScript front-end

a C++ member function must be able to call a JavaScript function bound to an object

cross-language inheritance at work: JavaScript “derives” from C++ class (e.g. TCP socket
interface in common library implemented with web sockets in browser)

© 2015, LogMeln, Inc. 48
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(2) Implement a library interface in JavaScript

C++
interface

C++

wrapper

LogMe(®

e original C++ interface (abstract class with virtual functions)

e emscripten C++ adapter layer
e marshals invocations of C++ virtual functions to JS

e JS code that contains implementation of functionality

© 2015, LogMeln, Inc.
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(2) Implement a library interface in JavaScript

(2.1) C++
e add a new wrapper class
» add special macro to generate emscripten constructor

« add member functions to map virtual function calls to JavaScript calls (no
virtual methods in JavaScript)

(2.2) JavaScript

« use the function .implementy(...) to bind to C++ interface
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(2.1) Annotating an interface for external calls in
C++

struct CommonToUI : public em::wrapper<ICommonToUI> {
EMSCRIPTEN_ WRAPPER(CommonToUI);

void OpChatMessageDelivered(std::string msg) override {
return call<void>("OpChatMessageDelivered", msg);

/] ...
s
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(2.1) Register an interface for external calls in C++

em::class <ICommonToUI>("ICommonToUI")
.allow subclass<CommonToUI>("CommonToUI")
.function("OpChatMessageDelivered",
EMBIND METHOD(ICommonToUI::0OpChatMessageDelivered),
em: :pure_virtual()

/] ...
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(2.2) Pass an object implementing an interface in
JS for external calls in C++

var iCommonToUI = {
OpChatMessageDelivered: function (targetId, msgTime, msg) {
console. log('OpChatMessageDelivered');

¥
}

var jsCommonToUI = Module.WrapCommonToUI(
Module.ICommonToUI.implement(iCommonToUI)

)
var service = new Module.Facade(
jsCommonToUI, jsPlatform, jsBasicDependencyProvider

)5
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Pitfalls in cross-compiled code

no long type (only Number, which is equivalent to C++ double)
passing long arrays is inefficient (involves data copies)
— memory views to elide copies for reads/writes (emscripten::memory_view<T>)

no garbage collection in JavaScript for objects originating from C++
— must clean everything up in JavaScript (use delete() method)

native JavaScript in C++ (emscripten::val)
— conversion functions in common library to an interval JSON class type

synchronous (blocking) operations are not supported
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Parting thoughts
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Things we learned

Very effective code re-use is possible
* [imited emscripten-specific code in common library
* [imited rewrite required in common library to be compatible with HTML5

Tracking down errors originating from C++ is not easy
* NO interactive debugger
* many nested lambdas leave little clue as to what could be going on

Inadequate compile-time verification of type binding correctness

« undefined or ill-defined types discovered only at run time when parameters
are passed
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Thank you!

Levente Hunyadi
levente.hunyadi@logmein.com
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