Cross-compiling C++ to JavaScript

Challenges in porting the join.me common library
to HTML5

JUNE 24, 2015

LEVENTE HUNYADI

LogMe(D

.me at a glance

join

levente.hunyadi ~

o
[
‘=
m
£
(]
4
-
]
i)
v
o}
(@]
)
@
—
(@
@
i)
|
@
i on
B
@
o
Q
—
@
[o
&
@
>
@
—
@
Q0

© 2015, LogMeln, Inc.

LogMe(®

@ Finder File Edit View Go Window

Check out all premium features:

Unlimited audio with international
conference lines

No matter how you join the conference, by
phone or internet calling (VoIP), everyone will
be on the same call. With phone numbers in
over 45 countries, your callers worldwide can
dial the number closest to them.

0

8

join.me/640-469-274 ~
™

3 = o @ HEl Wed11:42

No content is being shared.

lhunyadi

© 2015, LogMeln, Inc.

join.me characteristics

Application deployed to several platforms
 Windows, Mac, Android, 105, etc.

Native Ul that looks natural
« Utilizes native functionality exposed by the platform

Common functionality in a single library shared across platforms

 Encapsulates application logic for sharing a screen or window,
scheduling a meeting, using audio and video, etc.

LogMe@ © 2015, LogMeln, Inc. 4

Simplified architectural outline

Common library

Back-end services
screen share, audio/video, user account management, etc.

LogMe@ © 2015, LogMeln ,Inc.

Simplified architectural outline

Common library

Back-end services
screen share, audio/video, user account management, etc.

LOQMG@ © 2015, LogMeln ,Inc.

C++ as the choice of language

Cross-platform

* Integrates into Windows, Mac, Android, iOS, etc. (with appropriate
wrappers)

Speeds up development
 Develop and maintain a single code base, deploy to several platforms

LOgMG@ © 2015, LogMeln, Inc. 7

Porting the join.me common library to
HTML5

LogMe(®

Motivation for HTML5

Join a meeting with a “single click” on the website
« /ero deployment

Universal browser support
 No special plug-ins needed for things to work out of the box

LogMe@ © 2015, LogMeln, Inc. 9

% join.me - Free Screen Shz X - o n

€ C' | @ https://secure.join.me/leve

BEH S W =
HOME INSERT DESIGN TRANSITIONS ANIMATIONS SLIDE SHOW REVIEW VIEW Levente Hunyadi ~
[ElLayout ~ ENNOOO O # Find
5] Reset < = 23c Replace ~

R New A [=| Arrange
N Format Painter gjige~ [Section~ o L, WY v [y Select~
Clipboard [Slides Paragraph Drawing Editing

Cross-compiling C++ to JavaScript

Challenges in porting the join.me common library
to HTML5

JUNE 24, 2015

LEVENTE HUNYADI

LogMe(®

SLUDE10F36 [JX ENGLISH (UNITED STATES) = NOTES Wl COMMENTS E. BE= B e+ 78 Download the deskiop app

for the best experience, it's
free!

LogMe{m © 2015, LogMeln, Inc. 10

Preliminaries regarding common library

Large existing code base in C++
Frequent use of idioms and patterns very specific to C++

Code meant to be deployed to several platforms

LogMe@ © 2015, LogMeln ,Inc.

Our principal problem:

Browsers run JavaScript, not C++

LogMe(®

Some consequences

Large existing code base in C++
« Use a fully (or at least mostly) automated procedure

Frequent use of idioms and patterns very specific to C++

« Migrate code in a way that “eats everything”

— truly multi-paradigm: our library code covers several fields including scheduling,
low-level data manipulation, managing application state, notifications, etc.

— modern C++ features like lambdas, auto, decltype, move semantics, etc.

Code meant to be deployed to several platforms

 Avoid introducing platform-specific behavior
— if possible, no #if defined(...)

LogMe@ © 2015, LogMeln, Inc.

13

Ingredients for our recipe

Compiles arbitrary C++ source code
 generates and operates on low-level primitives

Generates cross-browser compiled code
 no browser-specific dependencies

Does not sacrifice efficiency
« compiled code is fast, only cross-interface calls are relatively expensive

LogMe@ © 2015, LogMeln, Inc. 14

Our solution:

emscripten with embind

LogMe(®

emscripten

Emscripten is an LLVM-based project that compiles C and C++ into
highly-optimizable JavaScript in asm.js format. This lets you run C

and C++ on the web at near-native speed, without plugins.

LogMe@ © 2015, LogMeln ,Inc.

emscripten toolchain

fastcomp embedded
lang BRI cmscripten in HTML5
ollnclele[l ompiler Ul
core

LOgMG@ © 2015, LogMeln, Inc. 17

Why emscripten?

Compiles arbitrary C++ code

« compiles advanced C++11 features our common library uses (emscripten is
based on C++11 conforming clang compiler)

« compatible with any programming paradigm
 bidirectional interface with JavaScript (call JS in C++, call C++in JS)

LogMe@ © 2015, LogMeln, Inc. 18

Why emscripten?

Generates portable code, no browser-specific dependencies

« compiled code runs in a (sandboxed) pseudo-virtual machine

— fixed-size (16 MB) memory for stack, heap and static data allocated in JavaScript
memory area

— no special add-on binaries or browser plug-ins required (“no-download” common library)
« external context (e.g. window) wrapped in C++ functions

— C++ standard library libc implemented in JavaScript (e.g. printf writes to browser
console)

— JavaScript environment is almost totally opaque to C++

LogMe@ © 2015, LogMeln, Inc. 19

Why emscripten?

Compiled code is fast, only cross-interface calls are expensive

o C++ optimization technigues apply
— LLVM optimization for C++ source code
— advanced C++ optimization carry over to JavaScript domain (for free)
* harness high-efficiency techniques in JavaScript
— compiled code runs in asm.js mode
— memory model implemented with fast JavaScript typed arrays (Uint8Array)

* relatively little data passes C++/JavaScript boundary

LogMe@ © 2015, LogMeln, Inc. 20

Interesting design challenges

or

the join.me common library under the hood illustrated with two case studies

LogMe(D

More (or less) common programming techniques
applied in the join.me common library

Task-based parallelism
e cross-thread communication with execution queues
e asynchronous operation scheduling

Extensive use of callbacks in continuation passing style

 what to do next is wrapped in a callback in C++, passed to and called
from external code but executed in C++

* error-handling with status codes and state change, not exceptions

Abstract classes with virtual functions act as interfaces

LOgMG@ © 2015, LogMeln, Inc. 22

Typical code sample from join.me

auto self = shared from this();
UpdateEarlyAccess(reason, [self, sessionDesc, reason](
bool didTriggerUpdate, ICommonToUI::ErrorCode errorCodeForLaunchpad) {

if (didTriggerUpdate) {
return;

}

LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI::OpReset, ..., sessionDesc, ...);

/] ...
self->m_State = STATE_ON_LAUNCHPAD;

})s
})s

LOQMG@ © 2015, LogMeln, Inc.

23

Continuation passing style

UpdateEarlyAccess [self, sessionDesc, reason](
bool didTriggerUpdate, ICommonToUI::ErrorCode errorCodeForLaunchpad) {

if (didTriggerUpdate) {
return;

}

LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI::OpReset, ..., sessionDesc, ...);

/] ...
self->m_State = STATE_ON_LAUNCHPAD;

})s

LOQMG@ © 2015, LogMeln, Inc.

24

Cross-thread communication with queues

LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI::OpReset, ..., sessionDesc, ...);

/] ...
self->m_State = STATE_ON_LAUNCHPAD;

})s

LogMe@ © 2015, LogMeln, Inc.

25

Error handling with status codes and state

auto self = shared from this();
UpdateEarlyAccess(reason, [self, sessionDesc, reason](
bool didTriggerUpdate, ICommonToUl::ErrorCode errorCodeForlLaunchpad) {

if (didTriggerUpdate) {

return;
}
LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI::OpReset, ..., sessionDesc, ...);
/] ...
self->m_State = STATE _ON_LAUNCHPAD;
1)

1)

LOQMG@ © 2015, LogMeln, Inc.

Abstract classes with virtual functions

auto self = shared from this();
UpdateEarlyAccess(reason, [self, sessionDesc, reason](
bool didTriggerUpdate, ICommonToUI::ErrorCode errorCodeForLaunchpad) {

if (didTriggerUpdate) {
return;

¥

LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI::OpReset, ..., sessionDesc, ...);
/] ...
self->m _State = STATE_ON_LAUNCHPAD;
1)
});

LogMe@ © 2015, LogMeln, Inc.

Case study 1

Task-based parallelism

LogMe(®

LogMe(®

Traditional OO

Operations

,,,,,,,,,,,,,,,

LogMe(®

Task-based parallelism

© 2015, LogMeln, Inc.

30

Typical code sample from join.me

LMI: :ENQUEUE(self->GetQueue(), [self, sessionDesc, errorCodeForLaunchpad]() {
SendOp(self->GetUI(), ICommonToUI: :OpReset, ..., sessionDesc, ...);

/] ...
self->m _State = STATE_ON_ LAUNCHPAD;

})s

» statement does not block, returns immediately
« operation is posted on execution queue
» callback is invoked when operation is scheduled

LogMe@ © 2015, LogMeln, Inc.

31

Our C++ library vs. JavaScript

e asynchronous * asynchronous
 uses callbacks uses callbacks
* supports timed operations * supports timed operations

LOgMG@ © 2015, LogMeln, Inc. 32

Our C++ library vs. JavaScript

» native hosts are multi-threaded JavaScript is single-threaded (global
(parallel execution) execution order)

* native implementations use lock- * browsers have their own scheduler
free queues (setTimeout and setinterval)

* synchronous operations are e synchronous operations are not
supported supported

LogMe@ © 2015, LogMeln, Inc. 33

Our C++ library vs. JavaScript

Implementation
* assign the same global thread to all execution contexts in JavaScript

e use a special-purpose queue for JavaScript exposed over our asynchronous
object interface
— SendOp(...) uses window.setimmediate(fn)
— SendDelayedOp(...) uses window.set Timeout(fn, delay)

* re-write all synchronous operations in our common library as asynchronous
operations to be compatible with JavaScript paradigm

End result: full transparency
* N0 need to be aware whether we target a native platform or HTML5
» uses most efficient task scheduling available on the target platform

LogMe@ © 2015, LogMeln, Inc. 34

Case study 2

Communicating over external
Interfaces

LogMe(®

Traditional OO interface vs. JavaScript

e exposes interface with virtual * No true interfaces or virtual
functions functions (uses prototyping instead)
* mixes value types and (ownership- » only value types and ownership-
retaining) reference (pointer) types lgnorant reference types
— int, enum, std::string — string
— T& — object

— std::shared _ptr<T>

LOgMG@ © 2015, LogMeln, Inc. 36

Interacting with OO interface from JS

1) Call a common library operation from JavaScript front-end
a JavaScript function must be able to call a member function implemented in C++

2) Implement a library interface in JavaScript front-end

a C++ member function must be able to call a JavaScript function bound to an object

cross-language inheritance at work: JavaScript “derives” from C++ class (e.g. TCP socket
interface in common library implemented with web sockets in browser)

LogMe@ © 2015, LogMeln, Inc. 37

Interacting with OO interface from JS

1) Call a common library operation from JavaScript front-end

a JavaScript function must be able to call a member function implemented in C++

LogMe@ © 2015, LogMeln ,Inc.

(1) Call a library operation in C++ from JavaScript
front-end

(1.1) Expose C++
operation in library to

JavaScript front-end (1.2) Invoke C++
operation in library from

JavaScript front-end

LogMe@ © 2015, LogMeln ,Inc.

(1.1) Expose library operation in C++ to JS

e expose class type by registering a unique name with em::class_(...)
 add binding using emscripten method .function() to register signature

* use embind utility functions in common to help with type mapping, e.g.
UTF-8 strings

LOgMG@ © 2015, LogMeln, Inc. 40

(1.1) Expose library operation in C++ to JS

em::class <IUIToCommon>("IUIToCommon")
.smart_ptr<std::shared ptr<IUIToCommon>>("IUIToCommonSPtr")
.function("OpPresenterSwitch Initiate",
EMBIND METHOD(IUIToCommon: :OpPresenterSwitch Initiate))
.function("OpPresenterSwitch Cancel"”,
EMBIND METHOD(IUIToCommon: :0OpPresenterSwitch Cancel))

LogMe@ © 2015, LogMeln, Inc.

41

(1.1) Expose library operation in C++ to JS
“Dark magic” inside

template<typename MemberFunctionType, MemberFunctionType memberFunction, typename ReturnType,
typename ClassType, typename... Args>
struct MethodInvoker {
static ReturnType invoke(ClassType& obj, typename TypeTransformer<Args>::type... args) {
return (obj.*memberFunction)(reverse transform_argument<Args>(args)...);
}
¥

template<typename MemberFunctionType, MemberFunctionType memberFunction, typename ReturnType,
typename ClassType, typename... Args>

constexpr auto wrap_method(ReturnType(ClassType::*)(Args...)) -> ReturnType(*)(ClassType&, typename

TypeTransformer<Args>::type...)

{
}

return ðodInvoker<MemberFunctionType, memberFunction, ReturnType, ClassType, Args...>::invoke;

#define EMBIND_ METHOD(method) wrap_method<decltype(&method),&method>(&method)

LogMe@ © 2015, LogMeln, Inc.

42

(1.1) Expose parameter types and callbacks in C++
to JS

add binding for function parameter types with em::class (...)

add binding for properties of newly registered types with .propertyl...),
field(...)

add binding for new callback function signatures (unique globally, no aliases)
add binding for enumerations (both new- and old-style enums)

LOgMG@ © 2015, LogMeln, Inc. 43

(1.1) Expose parameter types and callbacks in C++
to JS

em::value object<Point>("Point")
.field("x", &Point::x)
.field("y", &Point::y)

typedef std::function<void(ErrorCode)> Callback;

em: :class <ITCPSocket::Callback>("TCPCallback")
.constructor<const ITCPSocket::Callback&>()
.function("Invoke", &ITCPSocket::Callback::operator())

LOgMG@ © 2015, LogMeln, Inc. 44

(1.2) Invoke library operation in C++ from JS

» use global object Module to access C++ class as a prototype
» use keyword new to instantiate an object
» use the instance almost as a regular JavaScript object

LOgMG@ © 2015, LogMeln, Inc. 45

(1.2) Invoke library operation in C++ from JS

AsyncConnect: function (address, port, bufferSize, callback) {

var address = 'wss://' + address + ':' + port + '/endpoint';
var connectCallback = new Module.TCPCallback(callback);
var socket = new WebSocket(address);
socket.binaryType = 'arraybuffer';
socket.onopen = function () {
connectCallback.Invoke(9);
connectCallback.delete();
connectCallback = null;

}s

LOgMG@ © 2015, LogMeln, Inc. 46

(1.2) Invoke library operation in C++ from JS

callback

var connectCallback = new Module.TCPCallback(callback);

connectCallback.Invoke(9);
connectCallback.delete();
connectCallback = null;

LOgMG@ © 2015, LogMeln, Inc. 47

Interacting with OO interface from JS

2) Implement a library interface in JavaScript front-end

a C++ member function must be able to call a JavaScript function bound to an object

cross-language inheritance at work: JavaScript “derives” from C++ class (e.g. TCP socket
interface in common library implemented with web sockets in browser)

© 2015, LogMeln, Inc. 48

LogMe(®

(2) Implement a library interface in JavaScript

C++
interface

C++

wrapper

LogMe(®

e original C++ interface (abstract class with virtual functions)

e emscripten C++ adapter layer
e marshals invocations of C++ virtual functions to JS

e JS code that contains implementation of functionality

© 2015, LogMeln, Inc.

49

(2) Implement a library interface in JavaScript

(2.1) C++
e add a new wrapper class
» add special macro to generate emscripten constructor

« add member functions to map virtual function calls to JavaScript calls (no
virtual methods in JavaScript)

(2.2) JavaScript

« use the function .implementy(...) to bind to C++ interface

LOgMG@ © 2015, LogMeln, Inc. 50

(2.1) Annotating an interface for external calls in
C++

struct CommonToUI : public em::wrapper<ICommonToUI> {
EMSCRIPTEN_ WRAPPER(CommonToUI);

void OpChatMessageDelivered(std::string msg) override {
return call<void>("OpChatMessageDelivered", msg);

/] ...
s

LOgMG@ © 2015, LogMeln, Inc. 51

(2.1) Register an interface for external calls in C++

em::class <ICommonToUI>("ICommonToUI")
.allow subclass<CommonToUI>("CommonToUI")
.function("OpChatMessageDelivered",
EMBIND METHOD(ICommonToUI::0OpChatMessageDelivered),
em: :pure_virtual()

/] ...

LogMe@ © 2015, LogMeln, Inc. 52

(2.2) Pass an object implementing an interface in
JS for external calls in C++

var iCommonToUI = {
OpChatMessageDelivered: function (targetId, msgTime, msg) {
console. log('OpChatMessageDelivered');

¥
}

var jsCommonToUI = Module.WrapCommonToUI(
Module.ICommonToUI.implement(iCommonToUI)

)
var service = new Module.Facade(
jsCommonToUI, jsPlatform, jsBasicDependencyProvider

)5

LOgMG@ © 2015, LogMeln, Inc. 53

Pitfalls in cross-compiled code

no long type (only Number, which is equivalent to C++ double)
passing long arrays is inefficient (involves data copies)
— memory views to elide copies for reads/writes (emscripten::memory_view<T>)

no garbage collection in JavaScript for objects originating from C++
— must clean everything up in JavaScript (use delete() method)

native JavaScript in C++ (emscripten::val)
— conversion functions in common library to an interval JSON class type

synchronous (blocking) operations are not supported

LogMe@ © 2015, LogMeln, Inc. 54

Parting thoughts

LogMe(®

Things we learned

Very effective code re-use is possible
* [imited emscripten-specific code in common library
* [imited rewrite required in common library to be compatible with HTML5

Tracking down errors originating from C++ is not easy
* NO interactive debugger
* many nested lambdas leave little clue as to what could be going on

Inadequate compile-time verification of type binding correctness

« undefined or ill-defined types discovered only at run time when parameters
are passed

LOgMG@ © 2015, LogMeln, Inc. 56

Thank you!

Levente Hunyadi
levente.hunyadi@logmein.com

LogMe(@

