
Prosper: A Framework for Extending Prolog
Applications with a Web Interface

Levente Hunyadi
hunyadi@users.sourceforge.net

Budapest University of Technology and Economics
Department of Computer Science and Information Theory

1117 Budapest, Magyar Tudósok körútja 2., Hungary
Phone: +36 1 463-2585 Fax: +36 1 463-3147

Keywords: web integration; application development framework

Abstract. Clear separation of presentation and code-behind, declara-
tive use of visual control elements and a supportive background frame-
work to automate recurring tasks are fundamental to rapid web appli-
cation development. This poster presents a framework that facilitates
extending Prolog applications with a web front-end. The framework re-
lies on Prolog to the greatest possible extent, supports code re-use, and
integrates easily into existing web server solutions.

When developing web applications, separating application logic (what the pro-
gram does) and presentation (how results are displayed) is of paramount im-
portance. This approach leads to a logic focused closely on the task at hand
and a replaceable presentation layer that wraps all web-related issues. Prosper
augments regular Prolog modules that encapsulate application logic with a pre-
sentation layer that facilitates X(HTML) content generation.

Prosper [1] has a two-layered architecture (Figure 1). The lower layer, Pro-
log Web Container, maintains a direct persistent connection to the web server
through the FastCGI protocol [2], which caters for flexibility and easy integration
with an existing web server. In addition, Prolog Web Container parses HTTP
request and generates HTTP response headers and content (similarly to the PiL-
LoW [3] library), maintains a worker thread pool and assigns jobs to threads.
The primary task of the container is to isolate the communication protocol and
provide a natural view of request and session data for the programmer as well
as balancing incoming request load.

Prolog Server Pages, built on top of the container, defines an XML-based doc-
ument model. The conventional XML document model is extended with special
elements belonging to a dedicated namespace each of which realizes a transfor-
mation rule. A transformation rule can be thought of as a Prolog predicate that
defines a mapping between a source and a target XML subtree. For instance, a
simple iteration rule repeats its content a specified number of times. The exact
behavior of the transformation is specified by means of XML attributes. At-
tribute values may bind to Prolog predicates or may use the so-called expression
language. Expression language can be seen as an extension to the is/2 predicate
to include basic atom manipulation, request context variables and user-defined
Prolog functions. Prolog Server Pages also offer once-assignable local variables
valid inside the server page document to propagate computed values.



Prosper includes a predefined set of special elements implementing the most
common transformation rules such as conditionals and iteration constructs. How-
ever, the set of transformation rules is not restricted. Relying on the extension
infrastructure, the user may create new modules that contain hook predicates
registered for steps associated with reply generation. Modules correspond to
XML namespaces and exported hook predicate names to element names in server
page documents. Special elements and their implementor hook predicates are de-
clared in a configuration file.

The document model allows declarative, XML-based definition of visual ap-
pearance without the use of a foreign language interface (as opposed to e.g.
PrologBeans [6]). Complementing the visual part of Prolog Server Pages, logic
modules give real power to the architecture. Logic modules (which are conven-
tional Prolog modules) provide the code-behind that incorporates application
logic and are not interleaved with the presentation layer (unlike [4] and [5]).
Server pages can reference code-behind in a variety of ways: assign server page
variables based on application logic, test for the satisfiability of predicates and
formulate conditions using the return value of functions, thereby affecting visual
layout.

 

Prolog Server 
Pages core 

Prolog Web 
Container FastCGI 

module 

context 
assertion 

extension 
infra-

structure 
predefined 
special elements 

user-defined 
special elements 

expression 
language 

Fig. 1. The architecture of the proposed framework.

References

1. Project page of Prosper, http://sourceforge.net/projects/prospear, module
Prosper in CVS pserver:anonymous@prospear.cvs.sourceforge.net:/cvsroot/prospear

2. Mark R. Brown, FastCGI specification, Document Version: 1.0, Open Market, Inc.,
April 29, 1996

3. Daniel Cabeza and Manuel Hermenegildo, The PiLLoW Web Programming Li-
brary, Reference Manual, The CLIP Group, School of Computer Science, Technical
University of Madrid, January 5, 2001,
http://www.clip.dia.fi.upm.es/Software/pillow/pillow.html

4. Benjamin Johnston, Prolog Server Pages,
http://www.benjaminjohnston.com.au/template.prolog?t=psp

5. Mauro Di Nuzzo, Prolog Server Pages: A server-side scripting language based on
Prolog, Version 0.2, April 2006 http://www.prologonlinereference.org/psp.psp

6. PrologBeans and PrologBeans.NET for SICStus Prolog,
http://www.sics.se/sicstus/docs/latest/html/sicstus/PrologBeans.html


