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Summary

Constructing a computer model from a large set of data, typically contaminated with noise,
is a central problem to fields such as computer vision, pattern recognition, data mining,
system identification or time series analysis. In these areas our objective is often to capture
the internal laws that govern a system with a succinct parametric representation. Despite the
amount and high dimensionality of the data, the equation that relates data points is usually
expressed in a compact manner. Unfortunately, nonlinearity in the system under study and
the presence of noise means that conventional tools in statistics cannot be directly applied
to estimate unknown system parameters.

The dissertation explores estimation methods focused on three related areas of errors-in-
variables systems: fitting a nonlinear function to data where the fit is subject to constraints;
fitting a union of several elementary nonlinear functions to a data set; and estimating the
parameters of discrete-time dynamic systems.

Curve and surface fitting is a well-studied problem but the presence of noise and non-
linearity in the function that relates data points introduces bias and increases estimation
variance, which is typically addressed with costly iterative methods. The thesis introduces
non-iterative direct methods that fit data subject to constraints, with emphasis on fitting
quadratic curves and surfaces, which are nevertheless close to estimates obtained by maxi-
mum likelihood methods.

Partitioning a data set into groups whose members are captured by the same relation-
ship in an unsupervised manner is a common task in machine learning, referred to as clus-
tering. While most approaches use a single point as a cluster representative, or cluster data
into subspaces, less attention has been paid to nonlinear functions, or manifold clustering.
The thesis applies constrained and unconstrained fitting and projection methods in the er-
rors-in-variables context to construct an iterative and a non-iterative algorithm for manifold
clustering, which incurs modest computational cost.

Identification of discrete-time dynamic systems is a well-understood problem but its er-
rors-in-variables formulation, when both input and output is polluted by noise, introduces
interesting challenges. Several papers discuss system identification of linear errors-in-varia-
bles systems but the estimation problem is more difficult in the nonlinear setting. The thesis
combines the generalization of the Koopmans–Levin method, an approach to estimate pa-
rameters of a linear dynamic system with a scalable balance between accuracy and compu-
tational cost, with the nonlinear extension to the original Koopmans method, which gives a
non-iterative approach to estimate parameters of a static system described by a polynomial
function. The result is an effective system identification method for dynamic errors-in-vari-
ables systems with polynomial nonlinearities.





Összefoglaló

A számítógépes látás, mintafelismerés, adatbányászat, rendszeridentifikáció és idősorelem-
zés egy-egy központi feladata számítógépes modellt alkotni olyan nagyméretű adathalmaz-
ból, amely tipikusan zajjal terhelt. Ezeken a területeken a feladatunk gyakran az, hogy egy
tömör paraméteres leírással ragadjuk meg azokat a belső törvényszerűségeket, amelyek az
adott rendszert irányítják. Az adatok nagy mennyisége és magas dimenziószáma ellenére
azonban az adatok közötti összefüggés többnyire tömör formában leírható. Ugyanakkor a
vizsgált rendszerekben a nemlinearitás és a zaj jelenléte sajnos ahhoz vezet, hogy a hagyo-
mányos statisztikai megközelítések közvetlenül nem alkalmazhatók a rendszer ismeretlen
paramétereinek becslésére.

Az értekezés három kapcsolódó területet tárgyal az errors-in-variables rendszerek téma-
köréből: nemlineáris függvények illesztése korlátozások mellett; elemi nemlineáris függvé-
nyek sokaságának együttes illesztése; illetve diszkrét idejű dinamikus rendszerek paraméter-
becslése.

A görbe- és felületillesztés jól ismert feladat, de a zaj és az illesztett függvényben lévő
nemlinearitás jelenléte torzítást visz a becslésbe, és növeli a becslés szórását, amit tipiku-
san költséges iteratív módszerekkel küszöbölnek ki. Az értekezés olyan közvetlen nemite-
ratív módszereket mutat be, különös hangsúllyal másodfokú görbék és felületek illesztésére,
amelyek korlátozások mellett végeznek görbe- és felületillesztést, mindazonáltal a maximum
likelihood módszerekhez közeli eredményt adva.

A gépi tanulás területén egy gyakori feladat a klaszterezés, azaz egy adathalmazt ellenőri-
zetlen módon olyan csoportokra bontani, amelynek tagjait hasonló összefüggés kapcsolja
össze. Amíg a legtöbb megközelítés egyetlen pontot használ egy klaszter reprezentatív ele-
meként, vagy éppen alterekre bontja a teljes adathalmazt, kevesebb figyelmet kaptak a klasz-
terezésben a nemlineáris függvények. Az értekezés korlátozásokkal és korlátozások nélkü-
li illesztési és vetítési módszereket errors-in-variables környezetben alkalmazva egy iteratív
és nemiteratív algoritmust mutat be nemlineáris klaszterezésre, mérsékelt számítási költség
mellett.

A diszkrét idejű dinamikus rendszerek identifikációja klasszikus feladat, de errors-in-
variables környezetben való megfogalmazása, amikor mind a bemenet, mind a kimenet zaj-
jal terhelt, izgalmas kihívásokat rejt. Számos cikk tárgyalja lineáris errors-in-variables rend-
szerek identifikációját, de a becslési feladat nehezebb nemlineáris megfogalmazásban. Az
értekezés az általánosított Koopmans–Levin módszer és az eredeti Koopmans módszer nem-
lineáris kiterjesztésének egy ötvözetét mutatja be; előbbi egy olyan megközelítés lineáris di-
namikus rendszerek paraméterbecslésére, amely tetszőlegesen skálázható pontosság és szá-
mítási költség között, míg utóbbi egy nemiteratív megközelítés olyan statikus rendszerek pa-
raméterbecslésére, amelyet polinomiális jellegű nemlinearitások írnak le. Az eredmény egy
hatékony rendszeridentifikációs módszer polinomiális nemlinearitásokból álló dinamikus
errors-in-variables rendszerek paraméterbecslésére.





Science begins with the world we have to live in, accepting its data
and trying to explain its laws. From there, it moves toward the imag-
ination: it becomes a mental construct, a model of a possible way of
interpreting experience. The further it goes in this direction, the more
it tends to speak the language of mathematics, which is really one of
the languages of the imagination, along with literature and music.

Northrop Frye
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Table of notations

The thesis uses the following general notation for scalars, vectors and matrices, and opera-
tions on scalars, vectors and matrices:

w a scalar
w a column vector
w> a row vector
W a matrix
ŵ an estimate vector quantity
w̄ the unobservable true value of a vector quantity
w̃ the noise component of a vector quantity
f (x) a scalar function f : R→R

f (x) a scalar-valued function that takes a vector f : Rn →R

f(x) a vector-valued function that takes a vector f : Rn →Rm

∂x f (y) gradient of f (y) w.r.t. the vector x
M† Moore–Penrose pseudo-inverse
⊗ Kronecker product
diagw a diagonal matrix of elements in w
vecW vectorization of matrix W (columns of W stacked below each other)
Ex expected value of a random variable x
σ2

x variance of a random variable x
σ2

x vector of variances of each component in x
Cσ2

x
a diagonal covariance matrix of elements in σ2

x

Definitions are terminated with the symbol ■, proofs with ä, and examples with ♣.
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In addition to general notation, certain concepts, variables and indices have a typical com-
mon notation throughout the thesis:

g model (system) parameter vector (combined input and output parameters)
θ transformed model (system) parameter vector
b input parameters (for dynamic systems)
a output parameters (for dynamic systems)
i data index for static systems
k data sequence index for dynamic systems (observation at time k)
r , s component index
xi vector of coordinates for data point i (for static systems)
zi transformed vector of coordinates for data point i (for static systems)
uk input observation at time k (for dynamic systems)
yk output observation at time k (for dynamic systems)
fd at a lifting function for the data vector, usually fd at a (xi ) = zi

fpar lifting function for the model parameter vector, usually fpar
(
g
)= θ

D covariance matrix built from sample data
C noise covariance matrix or noise covariance matrix polynomial

x
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CHAPTER

1
Introduction

A recurring problem in engineering is constructing a computer model from a possibly large
set of data. In fields such as computer vision, pattern recognition, image reconstruction,
speech and audio processing, signal processing, modal and spectral analysis, data mining,
system identification, econometrics or time series analysis, the goal is often to identify or
describe the internal laws that govern a system rather than to predict its future behavior.
In other words, one is interested in reconstructing how the measured variables are related
given a set of observations. The amount and dimensionality of the observed data may be
large yet one is often able to express the equation that relates data points in a succinct man-
ner. In a system identification context, for instance, one could be interested in the parame-
ters of a discrete-time dynamic system model, based on a measured input and output data
sequence, contaminated with noise. In a pattern recognition context, on the other hand,
one would seek to capture a set of unorganized data points with a number of simple shapes,
such as lines, ellipses, parabolas, etc. While these tasks appear to be wildly different, they
share some common properties, which outline the characteristics of parametric errors-in-
variables systems:

• The relationships that characterize the system under investigation admit a structure.
Even if the data accumulated may be large, the number of parameters is limited: the
system can be explained by a set of relatively simple relationships, each known up
to the parameters. A discrete-time dynamic system may be described by a low-order
polynomial that relates the output variable with past values of the input and output
variables, even if the data sequences may comprise of thousands of observations. Points
obtained from a manufactured object by a laser scanner could be modeled with a cou-
ple of quadric surfaces.

• There are no distinguished variables in general. The equation that relates data points
has the implicit form fi mp (x) = 0 rather than an explicit form y = fexp (z), i.e. errors-
in-variables systems have an inherent symmetry regarding the variables. For example,
in the parametric description of an ellipse Q(x) = ax2

1 +bx2
2 −1 = 0 in canonical form,

neither the component x2, nor y2 has special significance. Implicit functions can typ-
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Figure 1.1: Visual comparison between the standard least-squares and the errors-in-variables ap-
proach.

ically capture a wider range of systems, and can often result in a more succinct repre-
sentation than an equivalent explicit form y = fexp (z) where x> = [

y z>
]
. However,

techniques applicable to the explicit representation do not necessarily carry over to
the implicit one.

• The underlying data space is usually homogeneous and isotropic with no inherent co-
ordinate system. The estimation process should be invariant to changes of the coor-
dinate system with respect to which the data are described. For instance, in a three-
dimensional scan, there is no special significance of any of the coordinates x, y or z,
data may be rotated and translated.

• Measured data is contaminated with noise. Unlike the usual assumption in statistics,
there is in most cases no meaningful distinction between independent (noise-free)
and dependent (noisy) variables. In the errors-in-variables context all variables are as-
sumed to be measured quantities, hence contaminated with noise. Both the input and
the output of the dynamic system is treated as a sequence of noisy measurements, and
the points that are captured with a scanner are polluted with noise in all coordinates.

Identifying the underlying relationship that governs a system gives us a compact represen-
tation that is easier to manipulate and a key to understanding. For instance, a pattern recog-
nition algorithm that exploits that an approximated 85% of manufactured objects can be
modeled with quadratic surfaces [16], and subsequently reduces to fitting these surfaces,
uses far fewer parameters than a primarily non-parametric approach that uses only locality
information. Furthermore, the reverse-engineered model lends itself better to future trans-
formations such as constructive solid geometry operations.

Figure 1.1 illustrates the difference between the standard least-squares approach in statis-
tics and the errors-in-variables approach for linear data-fitting in two dimensions [20]. The

2



set of data at our disposal is identical in the two cases. The least-squares approach distin-
guishes an independent variable (x-axis) and a dependent variable (y-axis). Any measure-
ment error is assumed to concentrate in the dependent variable, hence the optimal solution
is to fit a line that minimizes the error w.r.t. the dependent variable. In contrast, the errors-
in-variables approach is symmetric: there is no distinction between independent and de-
pendent variables. As observations are treated as polluted with noise w.r.t. any variable, the
best-fit line can be vastly different from that in the standard least squares case. Apparently,
the errors-in-variables approach is more suited to a situation in which we try to understand
how a system works using a set of measurements, none of which can be treated as completely
accurate. Obviously, the least-squares approach is a special case of the errors-in-variables
approach where some variables take no error.

Depending on the structure imposed on the approximated model, multiple different es-
timation problems can be outlined. Systems can be classified into static or dynamic systems
whether observations are independent or coupled in time. The problem can be a pure pa-
rameter estimation problem where the solution is known up to a fixed number of free system
parameters or a non-parametric problem where discovering a suitable model structure is
part of the problem. In addition, parameter estimation problems can be further classified
into linear or nonlinear, both in terms of data and parameters.

When the relationship is linear, standard tools in mathematics and statistics, such as sin-
gular value decomposition, can be applied to static systems, and iterative algorithms may be
formulated for dynamic systems. Nonlinearity in the system, however, makes it difficult to
draw conclusions for the original (noise-free) relationship based on (noisy) measured vari-
ables; traditional approaches may lead to substantial bias as additive noise contaminates
nonlinear variables of the system. The objective of the thesis is to extend the results for lin-
ear errors-in-variables systems to a relatively rich set of the nonlinear case when the system
is captured by polynomial functions. This leads us to the following open questions:

• How can we extend the principles of methods developed with the usual statistical as-
sumption to the errors-in-variables context? Moving from the assumption of problem
separation into independent (known accurately) and dependent (measured with error)
variables to the (inseparable) errors-in-variables domain, a large number of additional
unknown quantities are introduced into the model, often repositioning the problem in
a more difficult context (e.g. multiple equivalent solutions and necessary normaliza-
tion).

• How can we generalize existing methods for linear systems in the errors-in-variables
framework to nonlinear systems? Linear systems usually reduce to a non-iterative so-
lution but nonlinear systems typically demand an iterative approach where conver-
gence and the choice of initial values are important issues.

• How can the errors-in-variables principles help us improve estimation accuracy while
imposing only a moderate computational cost?

• How can existing errors-in-variables methods be improved to apply to a wider range
of systems? Many existing methods have a limited applicability to general conditions,
or demand excessively large samples or obtain reliable results.

3



Figure 1.2: Identifying the decomposition of a complex curve.

• How can we incorporate estimation methods for nonlinear parametric errors-in-varia-
bles systems in machine learning applications such as model construction from point
clouds? Unlike parameter estimation problems where the structure of the problem is
a priori known, reconstruction problems must discover a feasible partitioning of the
data set into groups that exhibits a specific parametric relationship as well as estimate
the unknown parameters for data within a group.

The thesis investigates algorithms related to identification and recognition problems that
belong to the domain of nonlinear parametric errors-in-variables systems. We shall look
into both static and dynamic (time-dependent) systems, with focus on low-order polynomial
functions, and assume the noise that contaminates measurements is Gaussian. Contribu-
tions address both the pure parametric case, where the system is known up to the unknown
parameters, as well as the machine learning case, where we assume the system is known to
comprise of a set of constituents, each captured with a well-known structure defined by a set
of unknown parameters.

First, we venture onto the field of static systems where the estimation may be subject to
constraints. In a computer vision application, for instance, one may be interested in fitting
an ellipse rather than a general quadratic curve to an unorganized point set. Previous work
in the computer vision domain showed how to integrate constraints such as the quadratic
curve representing an ellipse (rather than e.g. a hyperbola) into the estimation but failed
to adequately take into account the nonlinear distortions induced by noise. The method
proposed in the thesis takes a step further, and incorporates constraints into parameter es-
timation while canceling the effect of noise.

Second, we investigate a machine learning or reverse engineering application, namely
clustering, where the system is originally built up of several constituents, each described by
a polynomial relationship, more restrictively quadratic curves and surfaces, but only an un-
organized set of noisy data is at our disposal, and we aim to discover the original structure
of the system and estimate parameters of the constituents. Unlike standard parameter es-
timation methods where the model to reconstruct is structured, i.e. is known up to a few
free parameters to estimate, the problem is more challenging when structure discovery is
part of the problem, i.e. a natural decomposition of the entity under study exists but is not
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ūk //

��

G(q) = B(q−1)
A(q−1)

ȳk//

��
ũk // Σ

uk // ỹk // Σ
yk //

Figure 1.3: A linear dynamic discrete-time errors-in-variables system.

ūk //

��

f
(
ūk−1, ū2

k−1, ȳk , ȳk−1, ȳ2
k−1, . . .

) ȳk//

��
ũk // Σ

uk // ỹk // Σ
yk //

Figure 1.4: An example of a polynomial dynamic discrete-time errors-in-variables system.

known to us. Several algorithms exist that can tackle the so-called (multi-)subspace cluster-
ing or hybrid linear modeling problem, where the objective is to build a model where each
partition of the data is captured by a linear relationship and the entire model is a compo-
sition of these partitions. Not every data set, however, admits a decomposition into linear
relationships, and applying linear methods to essentially nonlinear relationships loses the
simplicity and explanation power of these methods. A natural generalization of subspace
clustering is (multi-)manifold clustering, which we explore in this thesis, where each curved
manifold is captured by some nonlinear (or more specifically, polynomial) relationship. Fig-
ure 1.2 shows such a setup: a combination of points along four ellipses make up a complex
curve. Here, the complex curve comprises of four independent quadratic curves, which the
complex curve can be seen as a union of.

Finally, we explore dynamic systems, where we consider discrete-time but nonlinear sys-
tems that can be re-cast in a linear setting using a lifting function. Figure 1.3 shows how
a linear errors-in-variables system compares to a classical dynamic system setup in system
identification. In the classical case, only system output is measured with noise, system in-
put can be observed noise-free (i.e. no noise contribution by the dashed line), which is a
well-understood problem. The case is more subtle when both the system input and output
is contaminated with noise but many algorithms exist for the case when the ratio of input
and output noise is at our disposal. The thesis takes a step further and deals with dynamic
systems where the input and output are no longer related in a linear manner but captured
by a polynomial function. Such a system model is shown in Figure 1.4. The thesis combines
a generalization of the Koopmans–Levin method [65] with a nonlinear extension to the orig-
inal Koopmans method [66]. The generalized Koopmans–Levin method is an approach to
estimate parameters of a linear dynamic system with a scalable balance between accuracy
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and computational cost, whereas the nonlinear extension to the Koopmans method gives a
non-iterative approach to estimate parameters of a static system described by a polynomial
function. The algorithm proposed in the thesis alloys the two approaches, and estimates pa-
rameters of dynamic systems whose variables are related with a polynomial function from a
set of data polluted with Gaussian noise.

A working implementation with several examples is essential to the popularization of any
new methods. The results in this thesis are augmented with source code, which demonstrate
the feasibility of the proposed algorithms.
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CHAPTER

2
Parameter estimation over point
clouds

Fitting a model to measured data that captures the underlying relationship, in particular, fit-
ting (a certain a class of) quadratic curves and surfaces (e.g. ellipses and ellipsoids) occurs
frequently in computer vision, computer-aided design, pattern recognition and image pro-
cessing applications. Unlike the large mass of scattered data acquired with some measuring
device (e.g. a laser scanner), the curves and surfaces fitted to data can be represented with
only a few parameters, which lends itself to compact storage and easier manipulation. In
particular, low-order implicit curves and surfaces are a practical choice in grasping the rela-
tionship since they are closed under several geometric operations (e.g. intersection, union,
offset) while they offer a higher degree of smoothness than their counterparts with the same
number of variables but cast in an explicit form, and may be preferred especially if the ob-
ject under study itself is a composition of geometric shapes. It has been reported that 85%
of manufactured objects can be modeled with quadratic surfaces [16], which highlights the
significance of methods that can fit such surfaces to measured data.

The general estimation problem we face can be formalized using the notation

f (x̄i ) = 0

where x̄i is a vector of noise-free data, xi = x̄i +x̃i is a data vector i = 1, . . . , N with N being the
number of data points, x̃i is a noise contribution, and we seek to capture the relationship f ,
often referred to as a level-set function (or in this particular case, a zero-level set). However,
if structural information is available as to the relationship f of the point set, the estimates
can be improved by incorporating that information in the estimation procedure. Parametric
estimation methods take this approach and come down to choosing an appropriate model
and finding values for the model parameters. A general nonlinear parametric system takes
the form

f (x̄i , g) = 0

where x̄i is a vector of noise-free data, g is a vector of model parameters (e.g. curve or sur-
face parameters), and f is a nonlinear function that relates data and parameters. From the
formulation, it follows that the system is assumed structured, i.e. it is known up to (a few)
model parameters. Our goal is to estimate g from noisy samples xi .
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The field of parametric estimation methods targeting nonlinear systems is rather broad.
Some approaches that do not aim at discovering the internal structure in the data employ
techniques that allow sufficient flexibility of an approximating function f̂ to adapt to lo-
cal features (using many components in g). A prominent example is spline-like approaches
whereby a continuous curve with given order and possibly knot sequence is fit to the data
points (gradually pulling the function f̂ towards data points), minimizing an error measure
and the associated complexity of the curve. Even while these approaches are suitable for
approximating the data but are of little help explaining the data: the spline itself does not
facilitate understanding the underlying structure. Thus, we shall explore parameter estima-
tion methods where low-order polynomial functions such as quadratic curves (for 2D) and
surfaces (for 3D) capture the relationship between data points.

Thus, it is natural to restrict our investigation to a narrower scope; we will discuss non-
linear systems that assume a polynomial form in terms of data, which are captured by the
implicit equation

fd at a(x̄i )>fpar (g) = 0

where xi = x̄i + x̃i is a data vector i = 1, . . . , N with N being the number of data points,
x̃i ∼ N (0, Cσ2

x
) is a noise contribution, g is a parameter vector. The (polynomial) func-

tion fd at a : Rn → Rm is the lifting function for data, mapping a data vector x̄i ∈ Rn into
m-dimensional space, and the (polynomial) function fpar : Rp → Rm is the lifting function
for model parameters, mapping a parameter vector g ∈ Rp into m-dimensional space. The
matrix Cσ2

x
= diag

(
σ2

x

)
is the noise covariance matrix for the homoskedastic normal (Gaus-

sian) noise N (i.e. noise has the same variance for all data points) where σ2
x is a vector of

variances for each component of an x̃i . σ2
x is assumed to be known up to scale, i.e. σ2

x =µσ̄2
x

where the vector σ̄2
x is known but the scalar µ is unknown. The noise covariance matrix Cσ2

x
is (in general) of full rank: there is no distinguished variable that we can observe noise-free,
which is what we call the errors-in-variables approach.

Example 1. Observations of a static system transformed by a lifting function. Suppose we
have a set of noisy data in two dimensions

xi =
[

xi yi 1
]>

and our goal is to fit an ellipse minimizing algebraic distance

e = 1

N

N∑
i=1

(
f (xi , g)

)2 .

The parameters of the ellipse are

g = [
a b c p q d

]>
where we ideally have

ax2 +bx y + c y2 +px +q y +d = 0 s.t. b2 < ac

where the constraint ensures the estimator always produces an ellipse. Our lifting function
for data is then

fd at a(xi ) = [
x2

i xi yi y2
i xi yi 1

]>
8



and the lifting function of parameters is the identity mapping

fpar (g) = g.

♣
The rest of the chapter is structured as follows. Section 2.1 introduces the unconstrained

fitting problem in which the objective is either to minimize a geometric or an algebraic dis-
tance, but without any ancillary constraints. Sections 2.1.1 and 2.1.2 cover maximum like-
lihood methods, which minimize Euclidean distance of the scattered points to the curve or
surface being estimated, whereas Sections 2.1.3, 2.1.4 and 2.1.5 survey related work that are
based on simpler and computationally less expensive approaches, which reduce to solving
a regular or a generalized eigenvalue problem. Section 2.1.6 discusses the nonlinear Koop-
mans method, whose principles are integral to the noise cancellation step part of the con-
strained fitting algorithm proposed in this thesis, with numerical improvements that fur-
ther reduce computational cost. Section 2.2 concentrates on fitting quadratic curves and
surfaces subject to constraints, with a two-stage algorithm comprising of a noise cancella-
tion step and a constrained fitting step, which is one of the main results in this thesis. Sec-
tion 2.2.1 uses a known numerical technique to reduce matrix dimensions to the size of the
nonzero part of the constraint matrix, whereas Sections 2.2.2, 2.2.3 and 2.2.4 describe al-
gorithms for fitting various classes of quadratic curves and surfaces. While the algorithms
themselves are known results, the context in which they are used, namely, operating on a
noise-compensated matrix, is a new contribution of this thesis, and formulated as a single
algorithm in Section 2.2.5. The new algorithm in Section 2.2.5 is also a key ingredient to
another major result in this thesis covered in Chapter 3, a clustering method fitting at most
quadratic curves and surfaces, where an inexpensive yet effective estimation method is in-
dispensable.

2.1 Unconstrained fitting

An important class of fitting problems falls into the category of unconstrained fitting where
no constraints are imposed other than the implicit equation

fpar
(
g
)

fd at a (x̄i ) = θ>z̄i = 0.

Here, we seek to find the best g that minimizes the fitting error using noisy samples xi = x̄i+x̃i

where x̄i is noise-free data and x̃i is a noise contribution, and z̄i = fd at a (x̄i ). For simplicity,
we assume that fpar

(
g
)

is an identity transformation and thus θ = g.
One possible way to estimate g from xi is to use geometric distance, and employ maxi-

mum likelihood methods, and minimize

e = 1

N

N∑
i=1

d 2
i

where di measures the distance from the noisy point xi to the curve or surface f (x, g) =
0. The distance might either be Euclidean distance if the noise covariance matrix for x̃i is
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Cσ2
x
= σ2I (i.e. all vector components are contaminated with equal amount of noise) or in

general Mahalanobis distance (a scale-invariant distance measure that takes into account
correlations in Cσ2

x
).

Approaches that aim at minimizing Euclidean or Mahalanobis distance are geometric fit-
ting methods, and include maximum likelihood, approximate likelihood [49, 18] or renor-
malization methods [36]. While highly accurate, they lead to an iterative formulation that
may converge slowly (or even diverge) in some situations, and always requires a feasible ini-
tialization. More substantial levels of noise may impact convergence and have an adverse
effect on estimation accuracy.

A more robust approach than geometric fitting is to use algebraic distance

e = 1

N

N∑
i=1

(
f (xi , g)

)2

where noisy points are substituted into the curve or surface equation. The algebraic fit mini-
mizes this substitution error, which yields a fast, non-iterative approach that is typically less
accurate than geometric fit. With proper compensation for the error induced by noise, how-
ever, it is possible to reduce adverse effects, and construct estimation methods, such as the
nonlinear Koopmans method [66] or consistent algebraic least squares [42, 48], that achieve
accuracy similar to maximum likelihood estimation, at much lower computational cost.

For the purposes of parameter estimation, we assume that the data has zero mean and
has been normalized to its root mean square (RMS), which is meant to reduce numerical
errors [17]. For each dimension x of the data set, this means

mx = 1

N

N∑
i=1

xi

xi ← xi −mx

s

σx ← σx

s

and likewise for all other dimensions y , z, etc. where

s =
√

1

2n

n∑
i=1

{
(xi −mx)2 + (

yi −my
)2

}
for two dimensions and

s =
√

1

3n

n∑
i=1

{
(xi −mx)2 + (

yi −my
)2 + (zi −mz)2

}
for three dimensions. Reducing data spread also reduces the additive noise on components
of xi and the noise covariance matrix has to be updated accordingly. Translation and scal-
ing also dilates model parameters g. For instance, when estimating quadratic curves in two
dimensions with the lifting function

fd at a(xi ) = [
x2

i xi yi y2
i xi yi 1

]>
10



parameters
g> = [

g1 g2 g3 g4 g5 g6
]

in the original space are recovered as follows:

g1 ← g1s2

g2 ← g2s2

g3 ← g3s2

g4 ← −2g1s2mx − g2s2my + g4s3

g5 ← −g2s2mx −2g3s2my + g5s3

g6 ← g1s2m2
x + g2s2mxmy + g3s2m2

y − g4s3mx − g5s3my + g6s4.

2.1.1 Maximum likelihood estimation

Estimating parameters of a linear system where all data points are related by the same func-
tion but polluted by Gaussian noise with a known structure is the well-understood and widely-
used method of total least-squares fitting [35], solved as either an eigenvalue problem or a
computationally more robust singular value problem, which yields maximum likelihood es-
timates. Without a priori information (in addition to preliminary structural information),
maximum likelihood methods deliver the best possible estimates for the model parameters
based on measured data of the system under investigation. In the maximum likelihood con-
text, we seek to maximize the (joint) probability (compound probability density function)

p(x |g, x̄) =
N∏

i=1
p(xi |g, x̄i )

over the parameter vector g where x is a vector of all (observed) data points xi , x̄ is a vector
of all (unknown) noise-free data points x̄i , and

p(xi |g, x̄i ) = 1√
(2π)

dim
(
C
σ2

x

)
det

(
Cσ2

x

) exp

(
−1

2
(xi − x̄i )> C−1

σ2
x

(xi − x̄i )

)
(2.1)

in which the noise covariance matrix Cσ2
x

(available up to scale) is at our disposal, and we
have assumed that the noise contributions over data point xi are independent and identi-
cally distributed. (dimCσ2

x
equals the number of components in xi and x̄i .) While tackled

relatively easily for the linear case, the nonlinear case poses difficulty with the exploding
number of unknowns.

Removing the leading constant term in (2.1) we get

p(xi |g, x̄i ) ∝ exp

{
−1

2
(xi − x̄i )> C−1

σ2
x

(xi − x̄i )

}
leading to the log likelihood cost function that takes the form

J =
N∑

i=1
(xi − x̄i )> C−1

σ2
x

(xi − x̄i ) s.t. g>fd at a (x̄i ) = 0 (2.2)
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for each i = 1, . . . , N where fd at a (x̄i ) is a lifting of x̄i . Minimizing the constrained function
(2.2) (where the constraint enforces the model) is equivalent according to the method of
Lagrange multipliers to minimizing the unconstrained function

J =
N∑

i=1
(xi − x̄i )> C−1

σ2
x

(xi − x̄i ) (2.3)

+
N∑

i=1
ηi g>fd at a (x̄i )

When the lifting function fd at a is linear, the constraints can be substituted directly into
the constrained equation (2.2) and produce a simpler form. However, this is unfortunately
not possible in the nonlinear case and minimizing (2.3) w.r.t. all variables is burdensome.
Iterative methods, however, may offer a means to tackle the problem.

On the other hand, the objective function

J =
N∑

i=1
(xi − x̄i )> C−1

σ2
x

(xi − x̄i )

can be interpreted as

J =
N∑

i=1
d 2

(
xi − x̄i , Cσ2

x

)
=

N∑
i=1

d 2
C (xi − x̄i ) (2.4)

where

d (a−b, C) =
√

(a−b)> C−1 (a−b)

is the so-called Mahalanobis distance between data vectors a and b (or Euclidean distance if
C = I). In the particular case, this means that the distance between observed data points xi

and the (unknown) true data points x̄i is to be minimized, given the constraint g>fd at a (x̄i ) =
0.

This formulation allows us to set up an iterative procedure whereby the curve or sur-
face to be found is pulled towards the observed data points, minimizing the distance metric
(Figure 2.1). In fact, we seek the minimum of (2.4), which is a nonlinear least-squares opti-
mization problem, since the distance depends on the parameters g in a nonlinear manner.
If we compute

∂

∂g
dC (xi − x̄i )

we may use gradient-based minimization (e.g. Levenberg–Marquardt algorithm) to find the
local minimum. If seeded with an estimate for g that is close enough to the solution, the
value of g is readily found.

Unfortunately, values of x̄i are not at our disposal but given a curve or surface defined
with the (current) parameters g, observed data points xi can be projected to the curve or
surface to obtain so-called foot points, i.e. points that satisfy the constraint g>fd at a (x̄i ) = 0,
in each step. The most natural choice for the projection is to minimize geometric distance,
i.e.

x̄i = argmin
x

dC
(
xi −x(g)

)
.
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Figure 2.1: Iterative maximum likelihood estimation. The initial curve that gives a rough parameter
estimate is gradually attracted towards the final solution (continuous line).

The expression x(g) indicates that x must satisfy g>fd at a (x) = 0 where g and fd at a are given.
This way, we can compute the objective function value J and its gradient ∂

∂g J in each step.
The entire algorithm can be summarized as follows:

g = argmin
g

J (g) = argmin
g

N∑
i=1

dC

(
xi −argmin

x
dC

(
xi −x(g)

))
.

There are two important implications of this approach:

1. Good-enough initial estimates for g that are close to the solution are crucial such that
the local minimum obtained in the process is also a global minimum.

2. Fast projection algorithms are needed such that

x̄i = argmin
x

dC
(
xi −x(g)

)
can be obtained in an economical way.

The problem of initialization is tackled with relatively highly accurate but non-iterative meth-
ods such as Taubin’s method (see [61] and Section 2.1.4) or consistent algebraic least squares
(see [66, 42, 48] and Section 2.1.6). Projection, in general, requires solving polynomial equa-
tions but fast algorithms exist for the special case of projecting to at most quadratic curves
and surfaces (covered in more depth in Section 3.3). This highlights that despite the accuracy
of the maximum likelihood method, non-iterative low-cost methods with similar accuracy
are much desired.
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2.1.2 Approximated maximum likelihood estimation

The approximated maximum likelihood (AML) estimation method [18] is one of the various
computational schemes that have been proposed for estimating curve or surface parame-
ters, with accuracy close to those obtained by maximum likelihood methods. As its name
suggests, the method does not minimize the unconstrained maximum log-likelihood func-
tion (2.3) but a simplification of it. First, the likelihood function is formulated in an alter-
native way, then functions of unobservable noise-free variables x̄i are substituted with their
approximations obtained from available noisy data xi . Finally, an iterative scheme is em-
ployed to yield parameter estimates in a few iterations. Even while the approximated and the
true maximum log-likelihood function are seldom minimized at the same objective function
variable value, the estimates are close in practice.

The key to simplifying the objective function (2.3) of maximum likelihood estimation is
its alternative form, to be developed based on [18].

The method of Lagrange multipliers implies that the gradient (column vector of partial
derivatives) of (xi −w)>C−1

σ2
x

(xi −w) w.r.t. w is proportional to the gradient of g>fd at a (w) pro-

vided that both these gradients are evaluated at x̄i . Comparing the gradients, it follows that

C−1
σ2

x
(xi − x̄i ) =λi g>∂xfd at a (x̄i ) (2.5)

for some scalar λi . Multiplying both sides of the equation by Cσ2
x

and g>∂xfd at a (x̄i ), we find

g>∂xfd at a (x̄i ) (xi − x̄i ) =λi g>
(
∂xfd at a (x̄i )Cσ2

x
∂xf>d at a (x̄i )

)
g

and hence

λi = g>∂xfd at a (x̄i ) (xi − x̄i )

g>∂xfd at a (x̄i )Cσ2
x
∂xf>d at a (x̄i )g

(2.6)

On the other hand, multiplying both sides of (2.5) by (xi − x̄i )>, we obtain

(xi − x̄i )> C−1
σ2

x
(xi − x̄i ) =λi (xi − x̄i )>∂xf>d at a (x̄i )g

Substituting the value of λi from (2.6) into this equation, we may conclude that

(xi − x̄i )> C−1
σ2

x
(xi − x̄i ) = g>∂xfd at a (x̄i ) (xi − x̄i ) (xi − x̄i )>∂xf>d at a (x̄i )g

g>∂xfd at a (x̄i )Cσ2
x
∂xf>d at a (x̄i )g

(2.7)

Consider the Taylor expansion of the γth component of fd at a (x) about any particular w (the
observation index i is omitted from x for clarity, the subscript is the component index in x or
w):

fγ(x1, · · · , xd ) =
∞∑

n1=0
· · ·

∞∑
nd=0

∂n1

∂xn1
1

· · · ∂nd

∂xnd
d

fγ(w1, · · · , wd )

n1! · · ·nd !
(x1 −w1)n1 · · · (xd −wd )nd

which for a second order approximation simplifies to

fγ(x) ≈ fγ(w)+∂x fγ(w)(x −w)+ 1

2
(x −w)>∂xx fγ(w)(x −w)
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or rearranged

∂x fγ(w)(x −w) = fγ(x)− fγ(w)− 1

2
(x −w)>∂xx fγ(w)(x −w)

Setting w = x̄i and taking into account that g>fd at a (x̄i ) = 0 yields

g>∂xfd at a (x̄i ) (xi − x̄i ) = g> (fd at a (xi )− r (xi , x̄i ))

where r is a term encapsulating all second and higher order derivatives. With this, (2.7) can
be rewritten as

(xi − x̄i )> C−1
σ2

x
(xi − x̄i ) =

{
g> (fd at a (xi )− r (xi , x̄i ))

}2

g>∂xfd at a (x̄i )Cσ2
x
∂xf>d at a (x̄i )g

leading to the rearranged maximum likelihood objective function

J =
N∑

i=1

{
g> (fd at a (xi )− r (xi , x̄i ))

}2

g>∂xfd at a (x̄i )Cσ2
x
∂xf>d at a (x̄i )g

(2.8)

The reformulated maximum likelihood objective function (2.8) easily lends itself to ap-
proximations. A primary obstacle to direct minimization of (2.8) is that neither ∂xfd at a (x̄i )
nor r (xi , x̄i ) can be expressed as they depend on unknown noise-free observations x̄i . In
contrast, they have to be substituted with ∂xfd at a (xi ) and r (xi ) that are computed from noisy
observations. Formally, this is reflected in the approximated cost function [18]

J =
N∑

i=1

g> (fd at a (xi )− r̂ (xi )) (fd at a (xi )− r̂ (xi ))> g

g>∂xf̂d at a (xi )Cσ2
x
∂xf̂>d at a (xi )Cσ2

x
g

(2.9)

where f̂d at a (xi ) indicates approximation of fd at a (xi ) and r̂ (xi ) indicates approximation of
r (xi ).

As compared to the original maximum likelihood function, (2.9) takes the following sim-
plifications:

• The gradient ∂xfd at a (x̄i ) is approximated with the gradient ∂xfd at a (xi ) computed based
on noisy observations.

• Similarly to gradients, the residual components r (xi , x̄i ) that result from the Taylor
series expansion depend on the unknown true observations x̄i . If the lifting function
fd at a (x̄i ) can be expressed as a quadratic form in terms of x̄i , the true observations
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cancel if we apply expected value:

r (xi , x̄i ) = 1

2
(x−y)>∂xxfd at a(y)(x−y)

= trace

(
1

2
(x−y)>∂xxfd at a(y)(x−y)

)
Er (xi , x0,i ) = E

{
trace

(
1

2
(x−y)>∂xxfd at a(y)(x−y)

)}
= 1

2
E
{
trace

(
(x−y)(x−y)>∂xxfd at a(y)

)}
= 1

2
trace

(
E
{
(x−y)(x−y)>

}
∂xxfd at a(y)

)
= 1

2
trace

(
C∂xxfd at a(y)

)
This simplification applies to higher order terms as well, but dependence on the obser-
vations will not vanish. As dependence on unknown true observations is not desired,
they have to be expressed in terms of actual observations, in the same fashion as for
gradients.

One way to minimize (2.9) is to employ direct search methods. A more robust technique is
to use an iterative scheme. For this end, introduce the compact notation

J =
N∑

i=1

g>Ai g

g>Bi g

so that for the approximated likelihood function to attain a minimum we need

∂g J =
N∑

i=1

1

g>Bi g
Ai g−

N∑
i=1

g>Ai g(
g>Bi g

)2 Bi g = 0.

Let us introduce the substitutions

Mg =
N∑

i=1

1

g>Bi g
Ai

Ng =
N∑

i=1

g>Ai g(
g>Bi g

)2 Bi

Xg = Mg −Ng

so that we have
∂g J = Mgg−Ngg = Xgg = 0. (2.10)

Finally, the solution to (2.10) can be iteratively sought in several ways. One possibility is the
so-called fundamental numerical scheme [18], which seeks the solution as the eigenvector
corresponding to the smallest eigenvalue in the eigenvalue problem

Xgξ=µξ. (2.11)
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This approach is inspired by the fact that a vector g satisfies (2.10) if and only if it is a solution
to the ordinary eigenvalue problem (2.11) corresponding to the eigenvalue µ= 0. Let g(k) be
the current approximate solution in iteration k, and Xg(k) be computed with the substitution
of g(k). In a single iteration, the updated solution g(k+1) is chosen from that eigenspace of Xg(k)

that most closely approximates the null space of Xg, which corresponds to the eigenvalue
closest to zero in absolute value. In other words, we solve a series of eigenvalue problems

Xg(k) g(k+1) =µ(k+1)g(k+1). (2.12)

Another possibility is to seek the eigenvalue closest to 1 in the eigenvalue problem as in
[49]

Mgξ=µNgξ

leading to a similar series of eigenvalue problems

Mg(k) g(k+1) =µ(k+1)Ng(k) g(k+1). (2.13)

Like all iterative schemes, (2.11) and (2.13) require feasible initialization to avoid slow
convergence or divergence. Less accurate but non-iterative methods help provide initial es-
timates that may already be close to the final solution.

2.1.3 Nonlinear least-squares methods

As previously seen, maximum likelihood methods are solved with a gradient search or an
iterative scheme, where the former needs proper initialization and the latter may diverge,
especially in the presence of large noise. The principle of nonlinear least-squares methods
is to minimize the residual sum of squares (RSS), or in other words, the sum of the squares of
errors that result when we substitute data into the estimated objective function:

ĝ = argmin
g

N∑
i=1

(
f (xi , g)

)2 .

The motivation behind the approach is that standard least-squares optimization methods
can be employed to find a minimum, and when true values of data and parameters are sub-
stituted into the expression, we get zero error:

N∑
i=1

(
f (x̄i , g)

)2 = 0.

Let a linearization (lifting) of 2D data be

z>i = [
x2

i xi yi y2
i xi yi 1

]
(2.14)

which captures quadratic curves, and a linearization (lifting) of 3D data be

z>i = [
x2

i y2
i z2

i yi zi xi zi xi yi xi yi zi 1
]

(2.15)
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which captures quadratic surfaces where xi , yi and zi are data point coordinates in two or
three dimensions. (The same principles apply for higher-order polynomials.) The sample
covariance matrix is then

D = 1

N

∑
i

(
zi − 1

N

∑
j

z j

)(
zi − 1

N

∑
j

z j

)>
.

The least-squares solution then solves the eigenvalue problem

Dg =λg

for the minimum eigenvalue λ.
Unfortunately, simple as it is, directly minimizing algebraic error is statistically inaccu-

rate and leads to heavily biased estimates. As apparent from (2.14) and (2.15) the effect of
noise on various components may nonlinear, such as for x2 in (2.14) where

z>i =
[

(x̄i + x̃i )2 (x̄i + x̃i )
(
ȳi + ỹi

) (
ȳi + ỹi

)2 x̄i + x̃i ȳi + ỹi 1
]

.

This must be taken into account in devising such estimation schemes. This motivates an
approach to maintain the simplicity of least-squares methods yet combat their statistical
inaccuracy, which can be accomplished with a noise cancellation scheme that removes the
distortion effects of noise (as much as possible).

2.1.4 Estimation using geometric approximation

Estimates obtained with the least-squares approach are statistically inaccurate or biased
[73]. A more robust way is to use a linear approximation of the geometric distance and min-
imize

J =
N∑

i=1

(
f (xi , g)

)2∥∥∇ f (xi , g)
∥∥2 (2.16)

where the operator ∇ =
[

∂
∂x

∂
∂y

]
for 2D and ∇ =

[
∂
∂x

∂
∂y

∂
∂z

]
for 3D. Unfortunately,

(2.16) cannot be solved without iterations but a further simplification of it, called Taubin’s
method [61]

J =
∑N

i=1

(
f (xi , g)

)2∑N
i=1

∥∥∇ f (xi , g)
∥∥2

lends itself to a non-iterative solution. In two dimensions, for instance,

N∑
i=1

(
f (xi , yi , g)

)2 = g> N∑
i=1

([
x2 x y y2 x y 1

]> [
x2 x y y2 x y 1

])
g

N∑
i=1

∥∥∇ f (xi , yi , g)
∥∥2 = g> N∑

i=1

([
2x y 0 1 0 0
0 x 2y 0 1 0

]>[
2x y 0 1 0 0
0 x 2y 0 1 0

])
g

such that the problem can be formulated as

J = g>Ag

g>Bg
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Figure 2.2: Comparison of maximum likelihood (continuous line), nonlinear least-squares (dotted
line) and Taubin’s (dashed line) ellipse fitting methods to a set of two-dimensional coordinates.

with
∥∥g

∥∥= 1 and solved as a generalized eigenvector problem

g>Ag =µg>Bg.

The solution ĝ, as previously seen, is the eigenvector that belongs to the smallest eigenvalue.
Figure 2.2 compares various quadratic curve fitting methods to a set of two-dimensional

data points with coordinates (1;7), (2;6), (5;8), (7;7), (9;5), (3;7), (6;2) and (8;4). The best-fit
ellipse obtained with the maximum likelihood method (Section 2.1.1), which minimizes the
sum of squares of (signed) distances to the quadratic curve foot points using the Levenberg–
Marquardt method, is shown in continuous line, whereas the non-iterative methods non-
linear least-squares fit (Section 2.1.3) and estimation with geometric approximation using
Taubin’s fit (Section 2.1.4), are shown in dotted line and dashed line, respectively. The figure
highlights that there might be substantial difference between the fit obtained with geometric
distance and algebraic distance minimization.

2.1.5 Hyper-accurate methods

As we have seen, the ordinary least squares method solves the eigenvalue problem

Dg =λg

for the minimum eigenvalue λ, effectively minimizing algebraic (substitution) error. How-
ever, we may reformulate the above problem as

Dg =λQg
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introducing a properly chosen normalization matrix Q. For ordinary least squares, Q = I but
hyper-accurate methods choose Q such that higher-order bias terms induced by noise are
canceled. This allows these (non-iterative) methods to completely eliminate estimation bias
in ĝ and reduce variance [39], even if they do not attain the theoretical lower bound.1

Let

zi =
[

x2
i 2xi yi y2

i 2 f0xi 2 f0 yi f 2
0

]
where f0 is a scaling constant in the order of (mean-free) xi and yi ,

D = 1

N

N∑
i=1

zi z>i ,

and

Vi = 4



x x y 0 f0x 0 0
x y x2 + y2 x y f0 y f0x 0
0 x y y2 0 f0 y 0

f0x f0 y 0 f 2
0 0 0

0 f0x f0 y 0 f 2
0 0

0 0 0 0 0 0


which is what Taubin’s method effectively uses as normalization matrix. (For Taubin’s method,
Q = 1

N

∑N
i=1 Vi .)

The normalization matrix for hyper-accurate fitting [39] is calculated as

Q = 1

N

N∑
i=1

Vi +2S
{

zc e>1,3

}− 1

N 2

N∑
i=1

(
trace

(
D†Vi

)
zi z>i +

(
z>i D†zi

)
Vi +2S

{
Vi D†zi z>i

})
where

zc = 1

N

∑
i

zi

e>1,3 = [
1 0 1 0 0 0

]
and the symbol S denotes symmetrization

S {A} = 1

2

(
A+A>)

.

Hyper-accurate methods are preferred when the noise level is low. For higher noise level,
consistent algebraic least squares (introduced in Section 2.1.6), is a more appropriate choice,
which also uses fewer matrix operations and is nearly as accurate as hyper-accurate meth-
ods.

1This theoretical lower bound is called the Kanatani–Cramer–Rao lower bound CKC R
(
ĝ
)

and will be covered
in more detail in Section 2.1.7. Permitting iterative algorithms with an adaptive choice of the normalization
matrix Q, as in [5], it is possible to both entirely eliminate the bias in ĝ and achieve the theoretically lowest
variance CKC R

(
ĝ
)
.

20



2.1.6 Nonlinear Koopmans estimator

As previously seen, estimation strategies may be grouped into two coarse categories. High-
accuracy methods, such as maximum likelihood or approximated maximum likelihood esti-
mation, are close to the best possible estimate that can be obtained from the measured data
but are computationally more expensive and require proper initialization. Low-accuracy
methods, such as least squares or Taubin’s method, on the other hand, are easy to com-
pute and require no initialization but are not nearly as accurate. A method that alloys the
strengths of high-accuracy methods and mitigates the drawbacks of low-accuracy methods,
even in the context of large noise level, is therefore much sought after. In particular, non-
iterative schemes, even if they are not strictly optimal [39], can still deliver accurate esti-
mates, and avoid any possibility of divergence inherent to iterative algorithms, especially in
the presence of high levels of noise.

The principle of the nonlinear Koopmans estimator (also known as nonlinear extension
to the Koopmans method [66] and consistent algebraic least squares [42, 48]), is to build
the sample data covariance matrix from data subject to the lifting function fd at a and use an
appropriate (pre-computed) noise covariance matrix to cancel the matrix rank-increase in-
duced by measurement noise. Loosely speaking, the method tries to match the sample data
covariance matrix with the theoretical noise covariance matrix that corresponds to measure-
ment noise. Like with AML in Section 2.1.2, the noise covariance matrix depends on x̄i , which
are unknown, but can be approximated with xi , which are available.

When the lifting function is an identity mapping, the estimation problem is captured by
the simple linear relationship

g>x = 0.

The original work of Koopmans [40] addressed this estimation problem, and proposed a
non-iterative but fairly inaccurate method to estimate model parameters from second-order
statistical characteristics. The estimation method matches the data covariance matrix with
the conceptual noise covariance matrix. The underlying assumption is that were it not for
the noise present in observations xi , the data covariance matrix would be a singular ma-
trix. Thus, finding the eigenvector of the data covariance matrix with respect to a noise co-
variance matrix with the smallest-magnitude eigenvalue, parameter estimates can be found
[66, 42, 48].

For convenience, let us introduce the (sample) data matrix and the (sample) data covari-
ance matrix.

Definition 1. Data matrix.
X> = [

x1 x2 x3 . . . xN
]

■
Definition 2. (Sample) data covariance matrix.

D = E
{
(x−Ex) (x−Ex)>

}
≈

1

N

N∑
i=1

(
xi − 1

N

N∑
j=1

x j

)(
xi − 1

N

N∑
j=1

x j

)>
■
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Definition 3. Data covariance matrix of unobserved true data.

D̄ = 1

N

N∑
i=1

(
x̄i − 1

N

N∑
j=1

x̄ j

)(
x̄i − 1

N

N∑
j=1

x̄ j

)>
■

By definition, the matrix D̄ is rank-deficient (singular) and the matrix D is typically reg-
ular (positive definite). The positive definiteness of D is attributable to measurement noise.
The Koopmans estimator therefore uses the property that the data covariance matrix can be
decomposed into a contribution by the noise-free data and the noise

D = D̄+C(µ, ϕ)

where C(µ, ϕ) is the noise covariance matrix that has a magnitude parametrized by µ and a
structure parametrized byϕ:

C(µ, ϕ) =µC(ϕ).

For the 2D case, C(µ, ϕ) may admit the particularly simple form of

C(µ, ϕ) =µ
[

sin2ϕ 0
0 cos2ϕ

]
.

This special structure can be generalized as

C =µCϕ =µdiag
{
σ2

x

}
where

σ2
x =

[
σ2

x1
. . . σ2

xn

]
and each σ2

xr
corresponds to the variance of noise contaminating a particular component of

xr , assuming unit noise magnitude. In other words,
∥∥σ2

x

∥∥= 1 and the values ofσ2
xr

reflect the
relative magnitude of the noise variances w.r.t. one another. Colloquially, σ2

x is expressed as
σ2

x =µσ̄2
x with µ being “magnitude” and σ̄2

x “direction”.
Indeed, we may observe that for random variables of noisy data components xr and xs

we have

Ex2
r = E(x̄r + x̃r )2 = E(x̄2

r +2x̄r x̃r + x̃2
r ) = Ex̄2

r +σ2
x,r

Exr xs = E(x̄r + x̃r )(x̄s + x̃s) = E(x̄r x̄s + x̄r x̃s + x̃r x̄s + x̃r x̃s) = Ex̄rEx̄s

which would imply cov(xr , xr ) = x̄2
r +σ2

x,r and cov(xr , xs) = 0 elsewhere.
Multiplying by g from both sides we have

g>Dg = g>D̄g+g>C(µ, ϕ)g = g>C(µ, ϕ)g

as
g>D̄g = g>X̄>X̄g

where X̄g = 0 by problem formulation.
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Finding a model parameter vector g that satisfies

g>Dg = g>µC(ϕ)g

g>g = 1

is a generalized eigenvalue problem and the optimum solution is the eigenvector g that be-
longs to the smallest eigenvalue µ. As the matrix D is positive definite, the null space of
D−µC yields the parameter vector g (up to scale, normalized to

∥∥g
∥∥ = 1). The implication

that µ= 0 (which follows from the fact that by construction both D and C are positive defi-
nite) expresses a physical constraint that noise magnitude cannot be negative.

In the same fashion as with total least-squares estimation [20], the accuracy of the es-
timates can be improved if we use singular value decomposition instead of eigenvalue de-
composition. Reformulating,

g>X>Xg = g>µR>Rg

g>g = 1

where R>R = C(ϕ), hence the parameters are estimated as a generalized singular value prob-
lem on the matrix pair (X, R). The right singular vector g that belongs to the smallest singular
value s where s2 =µ is the parameter vector we seek.

Unlike the case of the original Koopmans estimator, once data are subject to the nonlin-
ear lifting function, the covariance matrix no longer assumes a simple linear structure, and
cannot be directly decomposed into magnitude parameter and structure matrix. In fact, it
turns out that in order to compute its entries, noise-free data would have to be at our dis-
posal, which are clearly not available. However, when the lifting function is polynomial in
terms of data, which is a relatively mild restriction, a series of simple steps can be taken to
approximate the noise covariance matrix from data.

For compactness, let us write

z̄i = fd at a(x̄i ).

In other words, once we make the substitution, the relationship

fd at a(x̄i )>fpar (g) = 0

simplifies into a (pseudo-)linear relationship

z̄>i θ = 0

that splits the expression into data and parameters. When the function fpar (g) is the identity
mapping, we arrive at the simpler relationship

z̄>i g = 0.

Let us begin our discussion by adapting definitions for the linear cancellation method to
the nonlinear case.
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Definition 4. Linearized data matrix. Let

Z =


f>d at a(x1)
f>d at a(x2)

...
f>d at a(xN )


N , n

=


z>1
z>2
...

z>N


N , n

where N is the number of data points and fd at a(x) : Rm →Rn is the lifting function. ■
Let us assume that fd at a(x) = z is a polynomial function in terms of components xr in

x> = [
x1 x2 . . . xn

]
.

For instance, we might have

z> = [
x2

1 x1x2 x2
2 x1 x2 1

]
.

Definition 5. Let
fd at a(x) = z = [

z1 z2 . . . znd

]
.

Then the linearized data covariance matrix (and its approximation from finite N data sam-
ples) is

D = E
{
(z−Ez) (z−Ez)>

}
≈

1

N

N∑
i=1

(
zi − 1

N

N∑
j=1

z j

)(
zi − 1

N

N∑
j=1

z j

)>
■

Definition 6. Let
fd at a(x̃) = z̃ = [

z̃1 z̃2 . . . z̃nd

]
where z̃r = zr − z̄r in which z̄r is the unobservable true value of the component. The lin-
earized noise cancellation matrix (and its approximation from finite N data samples) is then

C = E
{
(z̃−Ez̃) (z̃−Ez̃)>

}
≈

1

N

N∑
i=1

(
z̃i − 1

N

N∑
j=1

z̃ j

)(
z̃i − 1

N

N∑
j=1

z̃ j

)>
■

The estimator then proceeds as follows. First, we assume that the data covariance matrix
can be decomposed into a contribution by the noise-free data D̄ and the noise contribution
C, i.e.

D = D̄+C.

Multiplying by g from both sides,

g>Dg = g>D̄g+g>Cg = g>Cg

24



as
g>D̄g = g>Z̄>Z̄g

where Z̄g = 0 by definition. This implies that solving the above matrix equality entails finding
a model parameter vector g that satisfies

g>Dg = g>Cg

g>g = 1

in which g is unknown and C is known up to some noise parameters. Note that the matrix
C for the nonlinear case no longer has the special structure the noise covariance matrix had
for the linear case, namely

C =µCϕ 6=µdiag
{
σ2

x

}
.

Unfortunately, such a simplification is no longer possible when the components xr are sub-
ject to a mapping fd at a(x1, x2, . . . , xn). Nonetheless, we can follow the same approach as
with the linear case to decompose the covariance of measured data into the covariance of
unobservable true data and a noise contribution. If the mapping is a polynomial function,
the algorithm can be broken down into a series of simple steps. This yields a polynomial
generalization of Koopmans’ original method [40].

Example 2. Covariance of a quadratic component. Suppose we would like to estimate the
self-covariance of a term x2, i.e. cov(x2, x2). This corresponds to the top left entry of the
matrix C = E(

z̃i z̃>i
)

with data transformed as

z> = [
x2 x y y2 x y 1

]
where we have dropped the index i in xi and yi for brevity.

Let us calculate

E
{(

x2)2
}
= E(

x4)= E (x̄ + x̃)4 = E(
x̄4 +4x̄3x̃ +6x̄2x̃2 +4x̄ x̃3 + x̃4)

where E
(
4x̄3x̃

)= 4x̄3E (x̃) = 0 and E
(
4x̄ x̃3

)= 4x̄E
(
x̃3

)= 0 (expected value of odd central mo-
ment equals zero), yielding

E
(
x4)= E(

x̄4 +6x̄2x̃2 + x̃4)
where E

(
x̃2

)=σ2
x and E

(
x̃4

)= 3σ4
x (expected value of even central moment) such that

E
(
x4)= x̄4 +6x̄2σ2

x +3σ4
x .

This means that cov(x2, x2) comprises of a noise-free part cov(x̄2, x̄2) = E
(
x̄4

) = x̄4 and
a noise part 6σ2

xE
(
x̄2

)+ 3σ4
x . Unfortunately, E

(
x̄2

)
is an unknown quantity as we cannot

observe x̄ but we observe (the noisy) x instead. ♣

As seen from the example, such decomposition typically yields a noise contribution that
in turn depends on unobservable data. Fortunately, the approach can be applied recursively
to cancel these terms.
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E
(
w p

i

)= E{
(w̄i + w̃i )p

}
An observed quantity is split into an unobserved
quantity and noise.

E
(
w̃ 2p

i

)
=σ2p

w (2p −1)!! Even central moments of the normally distributed
variable w̃ where (2p −1)!! = (2p −1)(2p −3) . . . 1.

E
(
w̃ 2p−1

i

)
= 0 Odd central moments of the normally distributed

variable w̃ .
E (wi )≈ 1

N

∑N
i=1 wi Expected value is approximated with mean.

Table 2.1: Operations involved in separating a sample covariance matrix into a covariance matrix of
noise-free components and noise contribution.

Example 3. Canceling unobservable data in the covariance of a quadratic component.

Ex4 = x̄4 +6σ2
x x̄2 +3σ4

x

= x̄4 +6σ2
x

(
Ex2 −Ex̃2)+3σ4

x

= x̄4 +6σ2
xEx2 −6σ4

x +3σ4
x

= x̄4 +6σ2
xEx2 −3σ4

x

in which the substitution for Ex2 −Ex̃2 comes from

Ex2 = E (x̄ + x̃)2 = E(
x̄2 +2x̄ x̃ + x̃2)

= x̄2 +E(
x̃2)

= x̄2 +σ2
x

i.e. x̄2 = Ex2 −σ2
x ≈ average

(
x2

)−σ2
x . As a result,

Ex4 −Ex̄4 = 6σ2
xEx2 −3σ4

x .

♣
Notice how the expression finally reduces to components that depend on either a noise

parameter such asσ2
x andσ4

x , or components that can be approximated from observed sam-
ples such as Ex2 ≈ 1

N

∑
i x2

i .
Let wi be an arbitrary component in xi and its noise contribution w̃i be normally dis-

tributed with variance σ2
w . Table 2.1 summarizes the typical operations involved in comput-

ing the noise contribution in entries of the linearized sample covariance matrix D.
Once expressions for all entries are derived, we can set up a similar cancellation scheme

as with the linear case. The algorithm produces a polynomial eigenvalue problem (PEP)

Ψ(µ)g = (
D−C(µ)

)
g = 0

in which C(µ) is a polynomial in the scalar µ, meant to cancel noise effects and our goal is
to find the smallest-magnitude (positive real) eigenvalue µ. In general, C(µ) = C(µ, σ2

x, xi ),
i.e. C(µ) depends on both noise magnitude µ, other noise parameters σ2

x and noisy data xi ,
which approximate noise-free (but not observable) values x̄i . For example, C for estimating
parameters of a quadratic curve will take the form C(µ) = µ2C2 +µC1 where C2 is a matrix
whose entries depend onσ2

x andσ2
y , while those of C1 depend onσ2

x andσ2
y as well as E

(
x2

)
,

E
(
y2

)
, E

(
x y

)
, E (x) and E

(
y
)
, all of which are approximated from finite samples.
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2.1.6.1 Estimating parameters of quadratic curves

In order to illustrate how the procedure is applied to estimating parameters of quadratic
curves in two dimensions, let us see how the covariance matrix polynomial C(µ) is computed
for this special case using the outlined noise cancellation approach. The lifting function for
a quadratic curve is

fd at a(x) = [
x2 x y y2 x y 1

]>
where x>

i = [
xi yi

]
are data points. Let x = 1

N

∑N
i=1 xi and x2 = 1

N

∑N
i=1 x2

i (and likewise

for y and y2), and x y = 1
N

∑N
i=1 xi xy −cov(x, y). (Here, the notation x stands for average and

is not to be confused with x̄, which stands for noise-free data corresponding to x. Noise-
free values do not occur in the derivation, as they can always be approximated in terms of
noisy data.) Using the operations from Table 2.1, we may obtain the noise contribution part
of the covariance matrix. With σ2

x = µσ̄2
x , σ2

y = µσ̄2
y and σ̄2

x + σ̄2
y = 1, and the original noise

covariance matrix of xi having the special structure

Σ=µ
[
σ̄2

x 0
0 σ̄2

y

]
the calculations yield the following matrix polynomial in terms of µ:

C =µ2



3σ̄4
x 0 σ̄2

xσ̄
2
y 0 0 0

0 σ̄2
xσ̄

2
y 0 0 0 0

σ̄2
xσ̄

2
y 0 3σ̄4

y 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



−µ



6σ̄2
x x2 3x yσ̄2

x x2σ̄2
y + σ̄2

x y2 3xσ̄2
x yσ̄2

x σ̄2
x

3x yσ̄2
x x2σ̄2

y + σ̄2
x y2 3x yσ̄2

y yσ̄2
x xσ̄2

y 0
x2σ̄2

y + σ̄2
x y2 3x yσ̄2

y 6σ̄2
y y2 xσ̄2

y 3yσ̄2
y σ̄2

y

3xσ̄2
x yσ̄2

x xσ̄2
y σ̄2

x 0 0
yσ̄2

x xσ̄2
y 3yσ̄2

y 0 σ̄2
y 0

σ̄2
x 0 σ̄2

y 0 0 0


Once the covariance matrix polynomial is at our disposal, the problem reduces to finding

a solution to a special case of a polynomial eigenvalue problem called a quadratic eigenvalue
problem (QEP)

g> (
D−C(µ)

)
g = g> (

D−µC1 −µ2C2
)

g = 0

which involves a C(µ) with at most a quadratic dependence on µ and where the (real) eigen-
value closest to 0 and the corresponding eigenvector is the solution we seek.

One way to solve the QEP

Ψ(µ)g = (
D−µC1 −µ2C2

)
g = 0

is to apply linearization, thereby eliminating the polynomial dependence onµ at the expense
of increasing the size of coefficient matrices, which is analogous to companion matrices con-
structed from polynomials where the eigenvector of the companion matrix yields the roots
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of the polynomial. In particular, transformations that preserve symmetry are especially fa-
vored for their numerical stability.

A well-known result [63] for linearizing the QEP

µ2R2 +µR1 +R0

is with the first companion form

Ξ(λ) =Ξ1 −λΞ2 =
[

0 W
−R0 −R1

]
−λ

[
W 0
0 R2

]
(2.17)

where the choice for the (arbitrary full-rank) W =−R0 yields a generalized eigenvalue prob-
lem with symmetric matrices where the eigenvector w has a special structure

w =
[

v
λv

]
.

In our case of quadratic curves and surfaces, the substitutions are

R0 = D

R1 = C1

R2 = C2

Solving the resulting generalized eigenvalue problem is the linearized equivalent of solv-
ing the original polynomial eigenvalue problem. As the linearized problem has eigenvec-
tors w of dimension mp rather than m, the true polynomial eigenvector that belongs to the
eigenvalue µ becomes the column v of vecV = w of the linearized eigenvector Ξ1w = λΞ2w
that gives the smallest normalized residual, i.e.

v = argmin
u

∑
k

∣∣[Ψ(µ)u
]

k

∣∣∑
k |[u]k |

where [u]k is the kth component of the vector u.

Example 4. Comparing the accuracy of the nonlinear Koopmans estimator to other esti-
mators. Figure 2.3 compares three non-iterative estimation methods: direct ellipse fit [26]
(shown with dotted line), hyper-accurate ellipse fit [39] (shown with dashed line), and the
nonlinear Koopmans estimator (shown with dash dot line). Direct ellipse fit is a non-iterative
estimation method based on the nonlinear least-squares approach, discussed in Section 2.1.3.
Hyper-accurate ellipse fit, as outlined in Section 2.1.5, is a non-iterative method that com-
pletely cancels second-order error and is therefore highly accurate.

In Figure 2.3, 250 original data points sampled evenly along a high-curvature arc of an
ellipse (continuous line) are contaminated with Gaussian noise of σx = 0.1 (plotted as black
dots). The original ellipse that has generated the data points has center (12,13), semi-axes
with lengths of 4 and 2, and angle of tilt π

6 . The rotation and translation are present to illus-
trate that the fitting algorithms are not sensitive to such geometric transformations in the
plane. The points are limited to an arc of the ellipse because all fitting algorithms give very
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Figure 2.3: Comparing the accuracy of direct ellipse fit (dotted line), hyper-accurate ellipse fit (dashed
line) and the estimation method with noise cancellation (dash dot line) given noisy data points
(shown as dots).

similar results when the points are sampled along the entire ellipse, which would not lend
itself to meaningful comparison.

By comparing the outcome of each method, it can be seen how the nonlinear Koopmans
estimator can achieve an accuracy strikingly similar to that of hyper-accurate ellipse fit. The
difference in fitting accuracy is not significant. Both algorithms are equally close to the orig-
inal curve from which data has been sampled, whereas they far outperform direct ellipse fit,
which is based on traditional least squares and exhibits a significant low-eccentricity bias.
On the other hand, the nonlinear Koopmans fit amounts to solving a generalized eigenvalue
problem whereas hyper-accurate fitting requires the computation of several matrix pseudo-
inverses in addition. This means that the nonlinear Koopmans fit incurs a low computational
cost yet it produces accurate estimates. ♣

In deriving the noise covariance matrix polynomial C(µ), we have assumed Gaussian
noise distribution. Despite the normality assumption, the approach is applicable to cases
for symmetric but non-normal noise distributions.

Example 5. Comparing estimates for quadratic curves obtained from data contaminated
with various types of noise. Figure 2.4 shows quadratic curve estimates obtained from a
data set (1) contaminated with Gaussian white noise (Figure 2.4a) and (2) contaminated with
uniform noise with the same standard deviation as the normal noise (Figure 2.4b). Even
though the noise covariance matrix polynomial has been computed based on an assumption
of normal noise, the results appear to be valid even if the underlying noise distribution is not
normal. ♣
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(b) uniform noise

Figure 2.4: Comparing the accuracy of the nonlinear Koopmans estimator (dash dot line) and the
direct fit least-squares estimator (dashed line) to the original curve (continuous line) under various
noise conditions.

2.1.6.2 Eliminating the constant term

In the case of fitting quadratic curves, we have seen that the data vector subject to the lifting
function

z> = [
x2 x y y2 x y 1

]
has the constant term 1 that corresponds to the last entry of the model parameter vector

g> = [
a b c p q d

]
.

giving rise to a sample data matrix

Z =



x2
1 x1 y1 y2

1 x1 y1 1
...

...
...

...
...

...
x2

i xi yi y2
i xi yi 1

...
...

...
...

...
...

x2
N xN yN y2

N xN yN 1


that has a last column of the constant 1, and likewise a sample data covariance matrix

D = 1

N

N∑
i=1

(
zi − 1

N

N∑
j=1

z j

)(
zi − 1

N

N∑
j=1

z j

)>

that has a last column and row that are statistically invariant [31]. (In a similar fashion, the
bottom right entry of the noise covariance matrix polynomial C(µ) is identically zero, and
the matrix is rank-deficient.)

In fact, when we seek a linear fit z>g = 0 to the data matrix Z, we operate in the space of[
x2 x y y2 x y 1

]
and the parameters g define a hyperplane. However, subtracting
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the mean vector

m = 1

N

[ ∑
i x2

i

∑
i xi yi

∑
i y2

i

∑
i xi

∑
i yi N

]
= [

mx2 mx y my2 mx my 1
]

(2.18)

from the rows of the matrix Z, the problem reduces to a fitting problem where the hyperplane
passes through the origin, and the last component in g becomes redundant. This means we
may partition the sample covariance matrix D such that

D = 1

N
Z>Z =

[
D? d?
d>
? d0

]
(2.19)

where D? stands for the purely non-constant (quadratic and linear) terms, the entries in
d? are mixed constant vs. non-constant terms, and d0 = 1. This partitioning captures the
different nature of quadratic and linear data, and the statistically invariant terms. Likewise,
we may partition the model parameter vector such that

g> = [
g>
? g0

]
.

From the construction, we have
g0 =−d>

?g? (2.20)

which corresponds to

g0 = − 1

N

[ ∑
i x2

i

∑
i xi yi

∑
i y2

i

∑
i xi

∑
i yi

]
g?

= −[
mx2 mx y my2 mx my

]
g?,

directly stating that the hyperplane fit to the data matrix Z must pass through the centroid of
the points, effectively forcing the hyperplane through the centroid of the data. This transfor-
mation not only ensures the Euclidean invariance of the fit, but also reduces the dimension-
ality of the problem. With mean subtraction, the problem is readily reduced to determining
the orientation of the hyperplane to be fit, as the relative translation is now known. Once a
fit in the reduced space is at our disposal, we can easily recover the original parameters.

Exploiting the decomposition in (2.19) and the corresponding parameter reduction in
(2.20) on the original sample covariance matrix D, we can write the matrix polynomial

Ψ(µ) = D−C(µ) = D−µC1 −µ2C2

as

Ψ(µ) =
[

D? d?
d>
? 1

]
−µ

[
C? c?
c>? 0

]
−µ2

[
C?? 0
0> 0

]
where the bottom right entry of C(µ) is zero as it corresponds to the constant (and thus noise-
free) term. Writing the Schur complement of the bottom right entry ofΨ(µ), we get the rank-
one updated

Ψ?(µ) = D?−µC?−µ2C??−
(
d?−µc?

)(
d?−µc?

)> (2.21)
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which is a polynomial in µ of at most degree 2 and we seek

det
(
Ψ?(µ)

)= det
(
M0 −µM1 −µ2M2

)= 0. (2.22)

One way to find the eigenvalue µ in (2.22) is to apply the first companion form lineariza-
tion (2.17). In most applications, however, the value of µ2M2 is small, and may be ignored
without introducing excessive numerical error, leading to a standard generalized eigenvalue
problem

Ψ?(µ) ≈ M0 −µM1.

Furthermore, when we operate on the matrix pair (M0, M1), we may altogether avoid con-
structing

M0 = D?−d?d>
?

where M0 is the mean-free equivalent of the sample data covariance matrix D, and use the
pair (Zm , L1) instead where

Zm =



x2
1 −mx2 x1 y1 −mx y y2

1 −my2 x1 −mx y1 −my
...

...
...

...
...

x2
i −mx2 xi yi −mx y y2

i −my2 xi −mx yi −my
...

...
...

...
...

x2
N −mx2 xN yN −mx y y2

N −my2 xN −mx yN −my


is a mean-free sample data matrix in which the values mx2 , mx y , my2 , mx and my are from

the mean vector m in (2.18), L>
1 L1 = M1 and L1 may be found by Cholesky decomposition

of the positive definite matrix M1. This allows us to employ singular value decomposition of
(Zm , L1) instead, with improved numerical accuracy and lower computational cost.

2.1.7 Accuracy analysis

Having discussed several estimation methods, some of which are iterative, some of which
are non-iterative, it is natural to ask what the price is that we pay in accuracy for the lower
computational cost. A theoretical accuracy bound called the Kanatani–Cramer–Rao (KCR)
lower bound [38] provides a means to assess the absolute and relative accuracy of various
methods.

Among fitting algorithms, methods based on maximum likelihood (ML) are regarded as
the most accurate, and they attain the KCR lower bound up to high-order error terms [37].
The KCR lower bound is analogous to the Cramer–Rao lower bound in the traditional domain
of statistics, which is constructed by evaluating and inverting the Fisher information matrix,
and eliminating so-called nuisance parameters. However, the size of the matrices involved is
large, making the inversion analytically almost intractable. Nuisance parameters arise from
the fact that traditional statistics deals with data xi = x̄i + x̃i where x̄i are are unknown and x̃i

are drawn from a probability distribution but the true parameters g we are truly interested
in are not present, only indirectly via the implicit relationship f (x̄i , g). The KCR bound oper-
ates in a “dual framework” (as how [38] refers to it) where only parameters g of interest are
present, not nuisance parameters x̄i = x̄i (g), leading to a much simpler expression.
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The KCR lower bound CKC R
(
ĝ
)

on the variance of the parameter estimates measures the
accuracy of the estimator, i.e. an arbitrary unbiased estimator ĝ of g has

C
(
ĝ
)º CKC R

(
ĝ
)

(2.23)

where A º B means that the left-hand side A minus the right B is positive semi-definite, with
[15, 13]

CKC R
(
ĝ
)=σ2

(
N∑

i=1

(∇g f (x̄i , g)
)(∇g f (x̄i , g)

)>∥∥∇x f (x̄i , g)
∥∥2

)†

for noise with equal variance for vector components where σ2 is the noise variance, ∇w f is
the gradient of f w.r.t. the vector w and the superscript A† denotes the generalized inverse,
or with [39]

CKC R
(
ĝ
)= (

N∑
i=1

x̄i x̄>
i

g>C (fd at a(xi ))g

)†

(2.24)

where C (fd at a(xi )) is the covariance matrix of xi subject to the lifting function fd at a . In (2.24),
we have assumed a homoskedastic Gaussian noise over the independent random variables
xi as well as f (x, g) being linear in g.

2.2 Constrained fitting

We have so far seen how the accuracy of fitting algebraic distance

e = 1

N

N∑
i=1

(
f (xi , g)

)2

where we measure the substitution error of noisy points plugged into the curve or surface
equation, can be improved with a noise cancellation scheme and how the scheme helps the
algebraic distance approximate geometric distance

e = 1

N

N∑
i=1

d 2
i

where di measures the distance from the noisy point xi to the curve or surface f (x, g) = 0. The
presented non-iterative approach combines relatively low computational complexity with
relatively high fitting accuracy, and requires no hint for initialization, which eliminates slow
convergence (or divergence) experienced with methods inspired by minimizing geometric
distance.

However, in many cases we are interested in fitting a quadratic curve subject to con-
straints [56], i.e. estimating the parameter g such that it represents a particular class of quad-
ratic curves or surfaces such as ellipses or ellipsoids. This is especially important when data
are measured with substantial noise, and noisy data points may guide the estimator to a fit
that is otherwise not permitted in light of prior information.
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Figure 2.5: Data suggesting a hyperbola fitted without constraints (dashed), with ellipse-specific con-
straints (dash dot line) and parabola-specific constraints (continuous line).

Example 6. Constrained fitting. Figure 2.5 shows how constrained fitting always fits ellipses
(or parabolas) even if data would suggest another quadratic curve. This is essential when
the the noise contaminating the data has a large magnitude, which may destabilize the al-
gorithm unless the a priori information is incorporated, and we expect the algorithm to pull
the fit towards the desired state rather than provide a more accurate fit that diverges from the
desired state. The dashed line in Figure 2.5 shows the nonlinear Koopmans fit (consistent al-
gebraic least squares fit) without constraints while the dash dot line and the continuous line
shows the fit incorporating ellipse constraints and parabola constraints, respectively. ♣

A straightforward approach to the constrained estimation problem is to formulate it in
such a manner that the solution guarantees curves of a particular type. In the setting of
quadratic curves, an ellipse can be parametrized in one of the following manners:

P (cx ,cy , a,b,φ) = b2 (
(x − cx)cosφ− (y − cy )sinφ

)+ (2.25)

+ a2 (
(x − cx)sinφ+ (y − cy )cosφ

)−a2b2

P (px , py , qx , qy , a) =
√(

x −px
)2 + (

y −py
)2 +

√(
x −qx

)2 + (
y −qy

)2 −2a (2.26)

P (g) = g> [
x2 x y y x y 1

]
(2.27)

= ax2 +bx y + c y2 +d x + f y + g

where c> = [
cx cy

]
is the center of the ellipse, p> = [

px py
]

and q> = [
qx qy

]
are

the foci of the ellipse, a > 0 and b > 0 are the semi-major and semi-minor axis lengths, re-
spectively, and φ ∈ (−1

2π; 1
2π] is the angle of tilt enclosed with the horizontal and

b2 = a2 − 1

4

{(
qx −px

)2 + (
qy −py

)2
}
> 0.
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Among the parametrizations above, (2.25) is the standard parametrization, (2.26) is using
Kepler’s parameters of the ellipse and (2.27) is the general quadratic curve equation. (2.25)
and (2.26) take five parameters, whereas (2.27) takes six parameters but with the constraint∥∥g

∥∥= 1. In all parametrizations, P (◦) > 0 is the outside of the ellipse and P (◦) < 0 is the inside.
Ellipses expressed in the form (2.25) and (2.26) can always be converted to the general

quadratic curve equation (2.27) but if (2.27) represents an ellipse, it can be expressed in the
other two forms as well. For example, let

g> [
x2 x y y x y 1

] = Ax2 +B x y +C y2 +Dx +F y +G

M = 2(AF 2 +C D2 +GB 2 −2BDF − ACG)

N = B 2 − AC

S =
√

(A−C )2 +4B 2

then with

ap =
√

M

N S −N (A+C )
bp =

√
M

−N S −N (A+C )

we have for the semi-axes

a = max
{

ap , bp
}

b = min
{

ap , bp
}

.

Likewise, we have for the center

cx = C D −BF

N
cy = AF −BD

N

and for the angle of tilt

φ =


1
2 cot−1

( A−C
2B

)
if |A| < |C | and B 6= 0

1
2π+ 1

2 cot−1
( A−C

2B

)
if |A| > |C | and B 6= 0

0 if |A| < |C | and B = 0
1
2π if |A| > |C | and B = 0.

All but (2.27) guarantee that the curve we fit is an ellipse. However, all but (2.27) have
complicated implications when data are measured with noise, and the underlying true value
of the measured data is not available. The nonlinear perturbations induced by noise are
difficult to trace back across functions sin(•), cos(•) or

p•. In contrast, the general equation
(2.27) lends itself to an intuitive noise cancellation scheme.

Let us re-visit traditional least squares, which solves the eigenvalue problem

Dg =λg

for the minimum eigenvalue λ where D is the sample data covariance matrix. This is an
unconstrained fit, which fits lines, ellipses, parabola, hyperbola, etc. in 2D, without imposing
restriction on the class of curves. Even if we have prior information on the curve we are
interested in, this is not taken into account by the algorithm. If minimum algebraic fit is
achieved by a hyperbola rather than an ellipse, the least-squares fit returns a hyperbola, even
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if we seek an ellipse. For rank-deficient cases, such as parabolas, it is practically impossible
to recover the original shape, if the matrix D is built from data contaminated with noise, the
estimator produces either an ellipse or a hyperbola.

In order to remedy the problem, an extension to least squares, called direct least-squares
fitting of ellipses [26], uses a constraint (normalization matrix) Q to represent the constraint

g>Qg > 0

and solves the eigenvalue problem
Dg =λQg

for the only positive eigenvalueλ. In contrast to the least-squares fit, direct ellipse fit ensures
an ellipse, even if data might suggest otherwise, increasing the robustness of the fit. However,
direct ellipse fit is heavily biased towards low eccentricity, and exhibits huge distortion at
higher levels of noise.

In an effort to combine the accuracy gain from noise cancellation and the robustness in-
crease from imposing constraints, the proposed estimation approach comprises of the fol-
lowing consecutive steps:

1. noise cancellation

2. constrained quadratic least-squares fitting

This approach guarantees consistent estimation (step 1) while enforcing constraints even if
data would suggest a curve or surface other than that to be fitted (step 2). The noise can-
cellation scheme (step 1) has been covered in depth in Section 2.1.6 where the problem has
been shown to lead to a polynomial eigenvalue problem

Ψ(µ)g = (
D−µC1 −µ2C2

)
g = 0

which we can solve for the noise magnitude µ. With the notation

R =Ψ(µ̂)

where µ̂ solves Ψ(µ)g, our focus is now on constrained fitting (step 2), where the nonlinear
perturbations by noise are no longer present in R.

2.2.1 Reducing matrix dimension

In a large proportion of practical problems, we are interested in quadratic constraints that
cover only a subset of the parameters. For example, confining a curve estimator to produce
only ellipses, we have the parameter vector

g = [
a b c p q d

]>
but our constraint involves only the parameters a, b and c (which correspond to quadratic
terms x2, x y and y2), not the parameters p and q (which correspond to linear terms x and
y). In other words, the optimization problem

min
g

g>Rg

s.t. g>Qg = 1
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where the normalization g>Qg = 1 helps improve numerical stability without compromis-
ing the accuracy of estimates (g is to be computed only up to scale), ultimately leads to the
generalized eigenvalue problem

Rg =λQg,

where most entries in the matrix Q that represents constraints are zero. Let the vectors and
matrices be decomposed as

g> = [
g>

1 g>
2

]>
R =

[
R1 R2

R>
2 R3

]
Q =

[
Q1 0
0 0

]
where 0 denotes a zero matrix, and Q1 represents the constraint (e.g. that confines the pa-
rameters of a quadratic curve to stand for an ellipse or a hyperbola) such that[

R1 R2

R>
2 R3

][
g1

g2

]
=λ

[
Q1 0
0 0

][
g1

g2

]
As in [30, 31], let

T = −R−1
3 R>

2

S = R1 +R2T (2.28)

where the inverse R−1
3 exists. (This is usually the case in quadratic curve or surface fitting

problems where the inverse always exists unless points are co-linear or co-planar. If R3

were (exactly or approximately) singular, points
{

xi , yi
}

would lie on a straight line or points{
xi , yi , zi

}
would lie on the same plane, in which case fitting a quadratic curve or surface

would be meaningless, and a line or plane fitting estimator should be used instead.) Thus,

g =
[

g1

Tg1

]
where we solve the estimation problem by finding the eigenvector g1 of the reduced scatter
matrix S that satisfies g>

1 Q1g1, i.e. the eigenvector decomposition of

Sg1 =λQ1g1

is computed where we choose g1 such that it produces a g>
1 Q1g1 that is consistent with the

quadratic curve or surface to be fitted (e.g. positive for ellipses). In the sections that follow,
we shall investigate the choice of Q1 for various types of quadratic curves and surfaces.

2.2.2 Fitting ellipses and hyperbolas

Fitting ellipses and hyperbolas involves the quadratic constraint b2−4ac < 0 for ellipses and
b2 −4ac > 0 for hyperbolas with
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g = [
a b c p q d

]>
.

Notice that since g is unique up to scaling by a scalar (d is the coefficient of the constant
term), the constraint 4ac −b2 =±1 expresses both b2 −4ac < 0 (the discriminant condition
for an ellipse) and b2 −4ac > 0 (the discriminant condition for hyperbolas) because it is up
to us to choose a (negative or positive) scalar. Imposing the constraint 4ac −b2 = ±1, one
can avoid degenerate solutions and ensure that the estimated parameters indeed define an
ellipse or hyperbola (depending on sign), invariant to rotations and translations [26]. Written
in matrix notation, ellipse and hyperbola fitting require the constraint

q = g>diag

 0 0 2
0 −1 0
2 0 0

 , 03×3

g = g>Qg (2.29)

where q > 0 for fitting ellipses and q < 0 for fitting hyperbolas. (Evaluating g>Qg we get 4ac−
b2.) Using the matrix size reduction scheme from Section 2.2.1 we may write the constraint
in the equivalent form

q1 = g>
1

 0 0 2
0 −1 0
2 0 0

g1 = g>
1 Q1g1.

Seen as an optimization problem, we may then seek the solution to

min
g1

g>
1 Sg1

s.t. g>
1 Q1g1 = 1

where S is as defined in (2.28).
Introducing the Lagrange multiplier, we have

min
g1,λ

g>
1 Sg1 −λg>

1 Q1g1

where λ≥ 0. Differentiating w.r.t. the parameters we get a system of equations

2Sg1 −2λQ1g1 = 0 (2.30)

g>
1 Qg1 = 1

where we obtain g1 as the solution to the generalized eigenvector problem

Sg1 =λQ1g1. (2.31)

Suppose ξ is a solution to the eigenvector problem, then so is κξ. We can choose κ to satisfy
the constraint, hence

κ2ξ>Q1ξ = 1

κ =
√

1

ξ>Q1ξ
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and thus
ĝ1 = κξ

solves the system (2.30).
From the above it follows that for ellipse-specific fitting [26], the solution g1 (and its ex-

panded version g) corresponds ideally (in the absence of numerical errors) to the smallest
positive eigenvalue λ of the eigenvalue problem (2.31) with the constraint g>

1 Q1g1 = 1 (and
its expanded form with the constraint g>Qg = 1), whereas for hyperbola-specific fitting [53],
the best choice of g1 (and its expanded version g) among the eigenvectors is found by back-
substitution into (2.29).

Summarizing, the generalized eigenvalue problem (2.31) has three valid solutions with
respect to the constraints: one elliptical and two hyperbolic solutions to the conic fitting
problem, depending on the eigenvalue λ. There is a symmetry between only one of the
hyperbolic solutions and the elliptical solution, which enables us to uniquely identify the
correct solutions [53].

Lemma 1. Let A and B be symmetric square matrices, with A being positive definite. The signs
of the generalized eigenvalues of

Aξ=λBξ (2.32)

are the same as those of the matrix B, up to a permutation of the indices.

Proof. The proof is adopted from [55]. Let us define the spectrum σ (A) as the set of eigen-
values of A and let σ (A, B) be the set of eigenvalues of the matrix pair (A, B) in (2.32). Let
the inertia i (B) be defined as the set of signs of σ (B) and let i (A, B) be the inertia of σ (A, B).
With these notations, we have to prove that i (A, B) = i (B). As A is positive definite, it may be
decomposed as W2 for symmetric W, allowing us to write (2.32) as

W2ξ=λBξ.

Substituting ϑ= Wξ and multiplying by W−1 from the left, we get

ϑ=λW−1BW−1ϑ

so that σ (A, B) = σ
(
W−1BW−1

)
and thus i (A, B) = i

(
W−1BW−1

)
. From Sylvester’s law of in-

ertia [28], we have that for any symmetric A and nonsingular X, i (A) = i
(
X>AX

)
. Therefore,

substituting X = X> = W−1 we have i (B) = i
(
W−1BW−1

)= i (A, B).

Lemma 2. Let A and B be symmetric square matrices, with A being positive definite. If λk and
the corresponding ξk are a solution to the eigensystem

Aξ=λBξ

then the sign of λk matches the sign of ξ>k Bξk .

Proof. The proof is adopted from [55]. Multiplying both sides of (2.32) with ξ>k from the left
we have

ξ>k Aξk =λξ>k Bξ>k .

Since A is positive definite, ξ>k Aξk > 0 and therefore λi and the scalar ξ>k Bξ>k must have the
same sign.
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Theorem 3. The solution of the conic fitting problem defined by the generalized eigensystem

Sg =λQg

subject to the constraint matrix

Q =
 0 0 −2

0 1 0
−2 0 0


defining the constraint b2−4ac < 0 delivers three nontrivial solutions: one and only one ellip-
tical and two hyperbolic solutions.2

Proof. Since the (non-zero) eigenvalues of Q are −2, 1 and 2, from Lemma 1 we have that
there is one and only one negative eigenvalue and two positive eigenvalues, associated with
the solutions gk . Since the equations are homogeneous, both the positive and negative
eigenvalues correspond to eigenvectors that are valid solutions. Then according to Lemma 2,
there are two cases: (1) for a negative eigenvalue the constraint g>

k Qgk = b2−4ac is negative,
and gk is a set of coefficients representing an ellipse; (2) for positive eigenvalues, the con-
straint g>

k Qgk = b2 −4ac is positive, and gk is a set of coefficients representing a hyperbola;
there are two such solutions. From a geometric perspective, there are two hyperbolic so-
lutions since the constraint only defines that two pairs of real asymptotes must exist. The
solution can never produce a parabola, since this would require g>

k Qgk = 0, which is not
permitted by problem formulation.

Thus, there are two symmetric eigenvalues of the constraint matrix λk1 =−2 and λk2 = 2;
these correspond to the optimal elliptical and hyperbolic solutions, respectively. The third
eigenvalue λk3 = 1 also represents a hyperbola, however, it does not minimize the error as
desired, but maximizes it. This means that the eigenvector gk1 associated with the negative
constraint coefficient

κk1 = b2
k1
−4ak1 ck1

is the best elliptical fit, while the eigenvector gk2 associated with the positive constraint co-
efficient

κk2 = b2
k2
−4ak2 ck2

with the value nearest to that of the elliptical solution κk1 is the best hyperbolic fit.

2.2.3 Fitting parabolas

Unfortunately, parabola fitting cannot directly utilize the ellipse and hyperbola constraint
(2.29). Fitting a parabola would require q = 0 but this would lead to a trivial solution. Instead,
as in [31], a regular eigenvector decomposition of

Sg1 =λg1

2For this theorem, the subscript •1 has been dropped from Q1 and g1. However, they refer to the reduced
matrix and vector, respectively.
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is computed which has the incorporated implicit constraint Q = I, confining the estimation
to produce an unspecified but quadratic curve, and the parabola constraint is enforced ex-
plicitly rather than via the eigenvalue problem. Given the decomposition of S, the solution
we seek can be written as a linear combination of eigenvectors

g1 = v1 + sv2 + tv3

where s and t are scalars, and the eigenvectors v1, v2, and v3, with the corresponding eigen-
values λ1, λ2 and λ3, form an orthonormal basis vector set for the space of the coefficients
of the quadratic terms of all conics. Then we seek g1 with the minimum norm

F (s, t ) = g>
1 S>Sg1

= (v1 + sv2 + tv3)> S>S (v1 + sv2 + tv3)

= v>1 S>Sv1 + s2v>2 S>Sv2 + t 2v>3 S>Sv3

= λ2
1 + s2λ2

2 + t 2λ2
3

in which we have used the orthogonality property of eigenvectors v>i v j = 0 for all i 6= j . Find-
ing the minimum norm is motivated by the fact that the singular values of the matrix S (i.e.
the square roots of the eigenvalues of S>S) are the 2-norm distances of the respective vectors
to the null space of S. The eigenvector associated with the smallest singular value λ1 can be
considered the minimizing solution. Assuming v1 is the best fit, we can use combinations of
the other two eigenvectors to find optimal parabolic solutions. With

g = [
a b c p q d

]>
we can express the parabola constraint b2 −4ac = 0 with the eigenvectors as

C (s, t ) = (
v1,2 + sv2,2 + t v3,2

)2 −4
(
v1,1 + sv2,1 + t v3,1

)(
v1,3 + sv2,3 + t v3,3

)= 0

where vi , j is the j th element of the i th eigenvector, and in which

a = v1,1 + sv2,1 + t v3,1

b = v1,2 + sv2,2 + t v3,2

c = v1,3 + sv2,3 + t v3,3.

This leads us to the Lagrangian

L (s, t ,α) =F (s, t )+αC (s, t )

which yields a fourth-order polynomial in α after equating the derivatives w.r.t. the param-
eters with zero. Solving the polynomial for α and back-substituting it to get s and t , we
eventually obtain g1 and thus the parameter vector g.

2.2.4 Fitting ellipsoids

For ellipsoid-specific fitting [45], the constraint (in which k = 4) is chosen as

Q = diag

1

2

 0 k k
k 0 k
k k 0

−
 k k k

k k k
k k k

 , −1

4

 k 0 0
0 k 0
0 0 k

 , 04×4

 . (2.33)
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Unlike the constraint matrix for ellipses and hyperbolas, which express simple constraints,
the ellipsoid-specific constraint depends on a parameter k. Let

g> = [
g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

]
which pair with components of

z> = [
x2 y2 z2 x y xz y z x y z 1

]
and

I = g1 + g2 + g3

J = g1g2 + g2g3 + g1g3 − 1

4
g 2

4 −
1

4
g 2

5 −
1

4
g 2

6 .

When 4J−I 2 > 0, the parameter vector g represents an ellipsoid. On the other hand, when the
short radius of an ellipsoid is at least half of its major radius, we have 4J−I 2 > 0 (correspond-
ing to k = 4). Unfortunately, not all ellipsoids satisfy this sufficient condition, in particular,
long thin and compressed ellipsoids fail to have 4J − I 2 > 0. However, for any ellipsoid, there
always exists a k such that k J − I 2 > 0. It can be shown that when the short radius of an el-
lipsoid is at least 1p

k
multiple of its major radius, then we will have k J − I 2 > 0. A bisection

method, starting from a large k, estimating parameters g given Q(k), and iterating until g
identifies an ellipsoid, we may guarantee ellipsoid-specific fitting, as shown in [45].

Example 7. Comparing the accuracy of ellipsoid fitting with noise cancellation to other fit-
ting methods. Figure 2.6 demonstrates ellipsoid fitting and the impact of noise cancellation
on fitting accuracy. Scattered points are located in three-dimensional space, and are shown
with dots. The solid shape in the three-dimensional figure corresponds to maximum likeli-
hood fit (geometric distance minimization) while wire-frames correspond to direct ellipsoid
fit [45] (closer to the shape of a sphere) and ellipsoid fit with noise cancellation using the
nonlinear Koopmans method (closer to the solid shape obtained with maximum likelihood).
The two-dimensional figures are projections of the three-dimensional figure to the x, y and
z axes, where the coordinate system is centered at the ellipsoid. The ellipsoid estimated
with the noise cancellation method (dash-dot line) blends with the ellipsoid fitted with the
maximum likelihood method (continuous line), both of which are far apart from the ellip-
soid obtained with direct ellipsoid fit (dashed line). Ellipsoid semi-axis lengths 15, 20 and
25 have been chosen such that the short radius and the major radius have the proper ratio
to a make a search for k in (2.33) unnecessary. Points are concentrated in a single region of
the ellipsoid surface; if the points were sampled along the entire surface of the ellipsoid, all
fitting methods would give very similar results, preventing a meaningful comparison. The
Gaussian noise that contaminates points has unit variance in all directions.

Inspecting the outcome of the various fitting algorithms, it is clearly shown how the noise
cancellation method outperforms direct ellipsoid fit and how close it is to maximum likeli-
hood fit but is computed without iterations. Whereas the noise cancellation method and
direct ellipsoid fit have approximately the same computational cost, both of which amount
to solving one or two eigenvalue or singular value problems, maximum likelihood methods
either employ a parameter search in the fashion of the Levenberg–Marquardt algorithm or
they employ iterative schemes, which may take 8-10 iterations (if they converge). ♣
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Figure 2.6: Fitting an ellipsoid to noisy data. The two-dimensional figures are projections of the
three dimensional fit; maximum likelihood fit (continuous line), direct ellipsoid fit (dashed line) and
ellipsoid fit with the proposed method (dash-dot line).

2.2.5 Constrained fitting with noise cancellation

Having surveyed unconstrained fitting methods in Section 2.1, with special emphasis on the
noise cancellation scheme in Section 2.1.6, as well as constrained estimation methods in Sec-
tions 2.2.2, 2.2.3 and 2.2.4, we may now formulate a new errors-in-variables parameter esti-
mation method for quadratic curves and surfaces subject to constraints, which comprises of
the following two major steps:

1. noise cancellation

2. constrained quadratic least squares fitting

The first major part of the algorithm is the noise cancellation scheme for general quadratic
curves and surfaces, which can be broken down into the following steps:

1. Input: noisy samples xi and the relative noise magnitude vector σ̄2
x for each dimension.

2. Estimate the data covariance matrix D from noisy samples.
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3. Estimate the noise covariance matrix polynomial coefficients C1 and C2 from noisy
samples.

4. Compute the reduced-size matrices D?, C? and C?? by eliminating the statistically
invariant terms in D, C1 and C2.

5. Construct the matrix polynomialΨ?(µ) = D?−µC?−µ2C??.

6. Find the eigenvalue µ that solves det
(
Ψ?(µ)

)= 0.

7. Output: the noise-compensated (singular) matrix R? = D?−µC?−µ2C??.

The second major part is constrained fitting, which depends on the type of quadratic curve
or surface the constraint identifies.

The following algorithm summarizes the constrained estimation scheme for ellipses and hy-
perbolas:

1. Construct the reduced scatter matrix S by writing the Schur complement of the quad-
ratic terms in R?.

2. Solve the generalized eigenvalue problem Sg1 = λQ1g1 (or the corresponding singu-
lar value problem) for g1 with Q1 expressing the ellipse- and hyperbola-specific con-
straint.

3. Classify the eigenvectors g1,k based on the eigenvalue λk and the constraint value
g>

1,k Q1g1,k .

4. Recover the original parameter vector g.

The following algorithm summarizes parabola fitting:

1. Compute the eigenvector decomposition Sg1 = λg1 with S being the Schur comple-
ment of the quadratic terms in R?.

2. Based on g1 = v1 + sv2 + tv3, write the Lagrangian L (s, t ,α) =F (s, t )+αC (s, t ).

3. Solve the Lagrangian polynomial for α to recover the parameter vector g.

The following algorithm summarizes the constrained estimation scheme for ellipsoids:

1. Construct the reduced scatter matrix S by writing the Schur complement of the quad-
ratic terms in R?.

2. Solve the generalized eigenvalue problem Sg1 = λQ1(k)g1 (or the corresponding sin-
gular value problem) for g1 with Q1(k) expressing the ellipsoid-specific constraint with
a large k = 4.

3. Use a bisection method on k until g1 identifies an ellipsoid.

4. Recover the original parameter vector g.
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Comparison with other methods

Many algorithms are available in unconstrained 2D fitting but fewer in constrained 2D fit-
ting. Among constrained 2D fitting algorithms, two wide-spread algorithms include direct
ellipse fitting [26] with the quadratic component reduction scheme [30], and maximum like-
lihood fitting. Direct ellipse fitting minimizes algebraic distance, uses covariance matrices,
and involves no iterations but does not take into account the nonlinear perturbations in-
duced by noise. In contrast, maximum likelihood fitting minimizes geometric distance with
an iterative scheme where points are projected to the current curve estimates. Even while ef-
ficient projection schemes have been devised to project a point to an at most quadratic curve
(Section 3.3 and Appendix A) , these remain relatively costly operations. The proposed algo-
rithm alloys the benefits of the two approaches: it involves one or two eigenvalue or singular
value problems on covariance matrices, uses no iterations but nevertheless compares favor-
ably to the estimates that would be obtained via maximum likelihood. The proposed method
delivers estimates close to those obtained with Taubin’s method [61] or hyper-accurate el-
lipse fitting [39] but unlike these methods, the proposed method guarantees that the speci-
fied curve class is fitted, whereas Taubin’s method and hyper-accurate ellipse fitting, despite
what their name might suggest, may be misled by noise and fit other quadratic curve types
if that appears to fit better to data.

For 3D ellipsoid fitting, the two competing algorithms are direct ellipsoid fitting [45] and
maximum likelihood fitting. The same arguments as for 2D fitting apply, and the proposed
method successfully combines the non-iterative nature of direct ellipsoid fitting with the ac-
curacy of maximum likelihood estimation. Generalizations of Taubin’s method [61] or hyper-
accurate ellipse fitting [39] to 3D again lose their robustness by not enforcing the surface to
be an ellipsoid, which may lead to undesired parameter estimates not compatible with a pri-
ori information.

2.3 Summary

This chapter has explored the parametric estimation problem over noisy point clouds. Data
have been measured contaminated with Gaussian noise, and we have investigated how var-
ious parameter estimation methods fit curves and surfaces to the point set.

First, we have seen that iterative high-accuracy methods such as maximum likelihood
or approximated maximum likelihood methods produce estimates close to the true curve
or surface but at a substantial computation cost, with a risk of slow convergence or diver-
gence with improper initialization. On the other hand, we have also seen how low-accuracy
methods such as ordinary least squares or Taubin’s method can deliver parameter estimates
without iterations. The nonlinear Koopmans method, also known as consistent algebraic
least squares, has been shown to combine the benefits of high-accuracy and low-accuracy
methods, and yield accurate parameter estimates with a noise cancellation scheme, while
involving moderate computational cost.

Second, we have seen how to impose constraints on the parameter estimates and thus
produce a class of curves or surfaces that satisfy some property we are interested in. In par-
ticular, we have investigated fitting ellipses, hyperbola, parabola to two-dimensional data,
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and ellipsoids to three-dimensional data. We have seen how the preliminary noise cancel-
lation scheme adds estimation accuracy to least-squares-based methods, and how the esti-
mates obtained in this manner are superior to those obtained with ordinary least squares.

Novel contributions for unconstrained and constrained fitting include:

• applying the principle of the nonlinear Koopmans estimator to fitting quadratic curves
and surfaces;

• achieving noise cancellation by solving a symmetric quadratic eigenvalue problem;

• reducing matrix dimension by eliminating statistically invariant terms;

• applying the noise cancellation scheme to quadratic curve estimation and thus im-
proving (type-specific) ellipse, hyperbola and parabola fit;

• applying the noise cancellation scheme to quadratic surface estimation and thus im-
proving ellipsoid fit;

• a new cost-effective algorithm for fitting particular classes of quadratic curves and sur-
faces.
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CHAPTER

3
Structure discovery

With the increasing availability of data from various sources and modalities, there has been
escalated interest in acquiring, compressing, storing, transmitting and processing massive
amounts of data. Most of these advances rely on the observations that even though data sets
are often high-dimensional, their intrinsic dimension is often much smaller. For example,
we may have a data set of three dimensional data points, yet we are interested in discovering
lines, planes or ellipsoids in the data set. Conventional techniques, such as singular value
decomposition, seek a low-dimensional representation of the higher dimensional space, a
compact model that explains the data points using a limited set of base vectors, assuming
all data points originate from a single low-dimensional space. In most situations, however,
data points are seldom drawn from a single low-dimensional space. Rather, they belong to
multiple subspaces, and modeling involves both identifying subspace membership as well
as subspace fitting. Subspace clustering [68], as the problem is typically referred to, is a sig-
nificantly more difficult problem with a number of challenges:

1. Data segmentation and model parameter estimation are strongly coupled. Were ei-
ther the segmentation or the estimation known, the other could be easily derived us-
ing conventional estimation methods or projection. Simultaneous segmentation and
estimation is, however, more demanding.

2. Uneven distribution of data points and the relative position of subspaces with respect
to one another, including subspace intersections, seeks for more involved algorithms.

3. Model selection, i.e. choosing the right dimension for each of the subspaces, can be
difficult if the subspaces admit more complex structures.

4. Noise corruption introduces more uncertainty to model accuracy compared to the
case of a single subspace.

An intuitive way to address the problem of subspace discovery is to employ iterative refine-
ment. Given an initial segmentation, a subspace can be fit to each group using classical tech-
niques such as singular value decomposition. Then, given a model for each subspace, each

47



data point is assigned to its closest subspace. By iterating these two steps until convergence,
an estimate of the subspaces and segmentation may be discovered.

Despite their simplicity, iterative algorithms are sensitive to initialization. If data points
are randomly assigned, several restarts are required before a near-optimum solution is found.
In order to reduce the number of restarts, algorithms that produce feasible results with-
out any preliminary input are required. Spectral Local Best-fit Flats (SLBF) [71] is based on
the observation that points and their nearest neighbors often belong to the same subspace,
which provides estimates for the parameters of the subspace. A distance between a point
and the locally estimated subspace around the other can serve as a(n asymmetric) distance
measure between two data points. The thesis extends the principles of SLBF to the nonlinear
case, and we shall fit manifolds, described by polynomial functions, rather than subspaces
to data, and employ appropriate projections.

Structure discovery methods, including the algorithm presented here, contrast sharply
with approximation methods. Many approaches exist that approximate a data set with a
spline curve or surface, or some other weighting scheme where the model arises as a set
of basis functions and associated weights. The approach may be geometrically motivated
whereby approximation is interpreted as a continuous evolution process that drives an ini-
tial surface towards the target specified by the data points [4], or be a moving least squares
variant where each data point is associated with a support region and has a local surface es-
timate, and these local estimates are blended together with a weighting matrix [29]. Other
methods use a decomposition scheme to split the entire domain to suitably small domains
that can be fit with a simple function [52] or merged to form larger clusters based on the
inter-cluster distance and intra-cluster distance criteria [70]. These methods, however, typ-
ically do not aid in understanding the data by finding a natural decomposition that reflects
the internal model from which data originate.

Partitioning the entire data set into clusters where points within the cluster are related in
the same way whereas different clusters are captured by different relationships can identify
internal structure. Beyond the simple case when the cluster is represented by a single point,
such as k-means, work on partitioning data has been focusing on subspace clustering or hy-
brid linear modeling algorithms where clusters are assumed to be related in a linear manner.
These approaches include k-flats (KF) and its variants [10, 1], generalized principal compo-
nent analysis (GPCA) [69], local subspace affinity (LSA), random sample consensus (RANSAC)
for hybrid linear modeling, agglomerative lossy compression (ALC) [46], spectral curvature
clustering (SCC) [11], sparse subspace clustering (SSC) [25] and (spectral) local best-fit flats
(SLBF/LBF) [72]. An overview of such algorithms is given in [68].

Extensions of hybrid linear modeling algorithms exist that are not limited to clusters with
intra-cluster data related in a linear manner. nonlinear manifold clustering methods include
locally linear manifold clustering (LLMC) [27], manifold clustering with node-weighted mul-
tidimensional scaling [59], kernel spectral curvature clustering (KSCC) [12] and mixture of
probabilistic principal surfaces (MiPPS) [41]. Many of these are based on minimizing a cost
function involving an affine combination of all points with different weights, or expectation
maximization with general basis or kernel functions, shifting focus towards discovering the
clusters rather than understanding the structure of the clusters themselves. A common char-
acteristic is that the cluster definition is implicit (captured by some arrangement of data, e.g.
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closeness to a cluster center) rather than explicit (present in the data itself, e.g. explained by
the equation of an ellipse).

Section 3.1 describes an iterative algorithm for clustering a data set into groups fitted
by at most quadratic curves and surfaces, which is a new contribution of the thesis. The
iterative algorithm, which alternates between an update and an assignment step, expects
proper initialization, thus Section 3.2 discusses another contribution specific to this thesis
that does not need such initialization, and uses spectral clustering to find a segmentation
without iterations. Both of these algorithms rely on effective projection algorithms onto
quadratic curves and surfaces, these are covered in Section 3.3, which extends previously
known results. Finally, Section 3.4 discusses an asymmetric spectral clustering algorithm
the non-iterative clustering proposed in Section 3.2 uses, with parametrization specific to
the context in which it is utilized.

3.1 Iterative algorithm for manifold clustering

Given a set of observations xi with i = 1, . . . , N where each xi is a d-dimensional vector, the
standard k-means clustering aims to partition the N observations into k sets S = {S1, . . . , Sk }
so as to minimize the within-cluster sum of squares

argmin
S

k∑
p=1

( ∑
xi∈Sp

∥∥∥xi −mSp

∥∥∥2
)

where

mp = mSp = 1∣∣Sp
∣∣ ∑

x j∈Sp

x j

is the mean of data points in the set Sp .
Given an initial set of k means m1,(0) to mk,(0) (typically chosen randomly), the standard

iterative algorithm proceeds by alternating between two steps: an assignment step and an
update step. The so-called assignment step maps each observation to the cluster whose
mean is closest to it, i.e.

Sp,(t ) =
{

xi :
∥∥xi −mp,(t )

∥∥≤ ∥∥xi −m j ,(t )
∥∥ ∀ 1 ≤ j ≤ k

}
where each xi is assigned to exactly one Sp,(t ), even if it could be is assigned to two or more
of them. The update step calculates the new means to be the centroids of the observations
in the new clusters, i.e.

mp,(t+1) = 1∣∣Sp,(t )
∣∣ ∑

x j∈Sp,(t )

x j

The algorithm has converged when the assignments no longer change.
While simple and in many cases effective, the standard iterative algorithm, unfortunately,

suffers from several limitations. The entire point set Sp is assumed to be represented by a
single point mp , which is typically not sufficient unless the sets to identify are covered by
non-intersecting spheres. Otherwise, the algorithm fails to identify a natural grouping of
data points, and will produce sub-optimal results.
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k-means [47] LGA [4] manifold clustering

Goal find best centers find best-fit lines find best-fit curves
Error measure distance from center distance from line distance from curve
Update step compute mean estimate parameters estimate parameters
Assignment step assign to closest center project to line project to curve

Table 3.1: Comparison of the standard algorithm for k-means, the linear grouping algorithm (LGA)
and the proposed algorithm in terms of their objective, their update and assignment steps for the
two-dimensional case.
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Figure 3.1: Cluster assignments on some artificial data sets.

Linear grouping or k-flats algorithms [10, 64, 2, 1] are an improvement over standard
k-means in that they are capable of finding linear patterns in a data set. Rather than us-
ing a single mp , each set Sp is captured by a set of parameters θp where noise-free data
points x̄i satisfy θ>p x̄i = 0 where x̄i ∈ Sp .1 This is a leap forward as intersecting data sets
are no longer a limitation, provided they are captured by different parameters θ. The way
linear grouping algorithms work resembles the k-means algorithm but the goal is to find
best-fit d-dimensional planes instead of best centroids, the error measure is the distance
from a d-dimensional plane instead of the distance from a centroid, the update step uses
total least squares (singular value decomposition) and the assignment step is a projection
to a d-dimensional plane (Table 3.1). As singular value decomposition and projection to
a hyperplane are well-understood and easy to compute, linear grouping algorithms can be
effective if the underlying model is indeed linear.

Unfortunately, linear grouping or k-flats algorithms can solve the linear modeling prob-
lem but stumble into difficulty when the cluster models are nonlinear. Generalizing the
fitting shape to include quadratic (or higher-order) curves and surfaces (expressed as an
implicit polynomial function) is a natural extension to linear grouping algorithms. Such a
method can discover a structural decomposition of data where members of each group are
related by a low-order (linear or quadratic) implicit polynomial function.

1When parameters and data are related in a linear manner, that is, fpar (g) is an identity mapping, we have
g>

p x̄i = 0 where x̄i ∈Sp .

50



Example 8. Outcome of a manifold clustering algorithm. Figure 3.1 illustrates cluster out-
comes when a nonlinear algorithm (the method to be presented shortly) is executed on var-
ious artificial data sets used in [12], either with no noise (data points along five intersecting
circles in Figure 3.1a, and data points along a circle, an ellipse, a parabola and a hyperbola in
Figure 3.1b) or low noise level (three intersecting spheres in Figure 3.1c). Neither k-means
nor k-flats algorithms could handle these simple cases. ♣

The outline of the proposed iterative grouping algorithm resembles the iterative algo-
rithm of the standard k-means procedure. The primary difference lies in the use of param-
eters instead of mean values, and data point projection replacing simple point-to-point dis-
tance (between cluster center and data points) (see Table 3.1). As with the standard k-means
algorithm, the choice of initial data points affects convergence to an optimal solution.

Iterative grouping algorithm fitting polynomial functions.

1. Initialization. Choose k randomly chosen initial points xi with i = 1, . . . , k, and for each
data point xi

a) start with an initial neighborhood N (xi ) around xi

b) estimate the parameters θi ,(0) that best capture points in N (xi )

c) enlarge N (xi ) by adding nearest-neighbor points

d) compute new estimates θi ,(n) and compare them to the estimates θi ,(n−1) ob-
tained in the previous iteration

e) repeat until the neighborhood N (xi ) cannot be enlarged without worsening the
accuracy of θi ,(n)

f) let θi be the best θi ,(n) that belongs to the optimum N (xi ) around xi .

2. Initial grouping.

a) project each data point x j with j = 1, . . . , N to all candidate θi with i = 1, . . . , k

b) form initial groups Si with i = 1, . . . , k such that the distance is minimized.

3. Alternating optimization.

a) Update step. Each group of data points Si is used to estimate new shape param-
eters θi (where the best-fit surface minimizes µ in the nonlinear estimator).

b) Assignment step. Each data point x j is assigned to shapes θi it lies in the vicinity
of (e.g. the closest surface that minimizes the distance between the data point
and its foot point on the surface).

4. Finalization. Each data point is assigned to a single shape θi it lies closest to.

5. Re-sampling. Repeat the algorithm with different randomly chosen initial locations.
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The main idea of the algorithm is replacing linear subspace fitting with fitting curved mani-
folds, described by polynomial functions. The inputs of the algorithm are as follows:

X data set, d rows, N columns
d number of dimensions (2 for plane, 3 for space)
N number of data points
Σ the d ×d noise covariance matrix
k the desired number of clusters

Each column of the data set matrix X is a data point x>
i = [

xi yi
]

for 2 dimensions or
x>

i = [
xi yi zi

]
for 3 dimensions, and the covariance matrix is expressed as Σ= E(

x̃i x̃>
i

)
where the data point xi is split into a noise-free part and a noise part as xi = x̄i + x̃i where
neither can be observed directly. As output, the algorithm produces a mapping (a member-
ship set) S between data points, and one of the k clusters. Data points xi in the same clus-
ter are captured by the same polynomial function. Thus, after a few iterations, the method
constructs a model as a union of polynomial functions fitted to data. As with the standard
algorithm for k-means, the algorithm has converged to its final state with no data points
re-grouped from one cluster to another.

The algorithm can be broken down into the following sub-problems:

1. Fitting polynomial curves and surfaces to data. One way to accomplish fitting curves
and surfaces is with the nonlinear Koopmans (NK) method [66], which can be seen as
an alternative formulation of consistent algebraic least squares [42, 48]. The method
solves a polynomial eigenvalue problem, the matrix coefficients being the data covari-
ance matrix and noise cancellation terms. The data covariance matrix is computed
from the data xi subject to the nonlinear transformation fd at a(xi ), and the noise can-
cellation terms mitigate the effect of this transformation on noise. The approach is
not optimal in a maximum likelihood sense but nevertheless consistent: more data
produces better estimates. Unconstrained fitting algorithms have been discussed in
Sections 2.1. When a priori information is available on the curves or surfaces to be fit-
ted, economical constrained fitting algorithms, such as those presented in 2.2 as a new
contribution of the thesis, may be employed.

2. Identifying local neighborhoods. Any estimation method requires sufficient data to
produce reliable parameter estimates, especially in the presence of noise. In most
cases, the local neighborhood of a data point consists of other points that are related
in a similar way, or in other words, captured by the same polynomial function. This is
implicit in many multi-manifold clustering algorithms but is made explicit in our ap-
proach: points in a local neighborhood determine a fitting, and the fitting is deemed to
apply in that neighborhood. Choosing the right neighborhood can be accomplished
with an inflationary algorithm involving knn nearest neighbors, where knn is an in-
creasingly larger number until a suitable error measure begins to increase rather than
decline.

3. Projecting a point onto a curved manifold. While projecting to a subspace can be easily
accomplished, projecting to a curved manifold captured by a polynomial function is
computationally more intensive. Efficient methods that compute the so-called foot
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Figure 3.2: Data points and their associated foot points obtained by projecting the data points onto
the ellipse, minimizing geometric distance.

point of a data point that does not lie on the curved manifold (Figure 3.2) are essential
to the algorithm. Special cases for projecting to ellipses and ellipsoids, and quadratic
curves and surfaces are of particular significance. Projection onto a manifold lets us
determine the distance between a point and its foot point where the parameters of
the curved manifold on which the foot point lies have been estimated from a local
neighborhood. Projection algorithms are discussed in Section 3.3.

The iterative algorithm for manifold clustering has a significant element of randomness,
namely the choice of initial data points. Ideally, initial points are chosen such that each lies
on a different manifold, and each has a local neighborhood large enough to obtain reliable
estimates. Unfortunately, this is not always the case. The re-sampling step aims to reduce
the likelihood of improperly chosen initial locations, whereas the non-iterative algorithm
for manifold clustering in Section 3.2 remedies the issue by involving all points in forming k
clustering using a specially crafted pairwise distance measure.

3.2 Non-iterative algorithm for manifold clustering

The iterative algorithm for manifold clustering depends on a proper choice of initial data
points, which in turn determine the initial grouping. A method that finds an initial segmen-
tation without a preliminary assignment of data points, however, may both serve an initial
state for an iterative algorithm, as well be a clustering algorithm of its own.

The proposed non-iterative method is based on constructing an asymmetric distance
matrix and finding a best weighted cut in a complete graph, a task that is accomplished with
(asymmetric) spectral clustering. The nodes in the graph are data points to be clustered, and
the edges are weighted (inversely) by the entries ai j of the asymmetric matrix (the less the
distance, the greater the weight), which express distance between a point i and the surface
estimated from points in the neighborhood of the other point j . The best weighted cut splits
the graph into k components such that the weights running in between components are
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minimized. This corresponds to a partition into k clusters where we aim to maximize the
within-cluster sum-of-squares whereas minimize the inter-cluster sum-of-squares.

Grouping with spectral clustering remedies the issue of wrongly chosen initial locations.
Spectral clustering eliminates the need for re-sampling and provides a clustering that is al-
ready close to an optimum solution.

Grouping algorithm fitting polynomial functions, driven by spectral clustering

1. Initialization. For each data point xi with i = 1, . . . , N

a) start with an initial neighborhood N (xi ) around xi

b) estimate the parameters θi ,(0) that best capture points in N (xi )

c) enlarge N (xi ) by adding nearest-neighbor points

d) compute new estimates θi ,(n) and compare them to the estimates θi ,(n−1) ob-
tained in the previous iteration

e) repeat until the neighborhood N (xi ) cannot be enlarged without worsening the
accuracy of θi ,(n)

f) let θN (xi ) be the best θi ,(n) that belongs to the optimum N (xi ) around xi .

2. Compute asymmetric distances. For each pair of data points xi and x j , obtain their
asymmetric distances

a) project xi to the manifold parametrized by θN (x j ) and calculate ai j

b) project x j to the manifold parametrized by θN (xi ) and calculate a j i .

3. Spectral clustering.

a) build an affinity matrix from asymmetric distances ai j

b) assign data points to groups based on the affinity matrix eigenvectors.

Conceptually, the method is a spectral clustering algorithm with a specialized distance ma-
trix measuring the distance of a point and its projection onto a curved manifold, which has
been estimated from a local neighborhood. As such, the inputs of the algorithm are as fol-
lows:

X data set, d rows, N columns
d number of dimensions (2 for plane, 3 for space)
N number of data points
Σ the d ×d noise covariance matrix
k the desired number of clusters

As previously, each column of the data set matrix X is a data point x>
i = [

xi yi
]

for 2
dimensions or x>

i = [
xi yi zi

]
for 3 dimensions, and the covariance matrix Σ = E(

x̃i x̃>
i

)
where the data point xi is split into a noise-free part and a noise part as xi = x̄i +x̃i where nei-
ther can be observed directly. As output, the algorithm produces a mapping (a membership
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set) S between data points, and one of the k clusters. Data points xi in the same cluster are
captured by the same polynomial function. Thus, the method constructs a model as a union
of polynomial functions fitted to data but without iterations.

As with the iterative algorithm for manifold clustering (see Section 3.1), fitting polyno-
mial curves and surfaces to data (Sections 2.1 and 2.2), identifying local neighborhoods (as
in Section 3.1) and projecting a point onto a curved manifold (Section 3.3) are essential sub-
problems that have to be addressed to ensure the efficiency of the clustering method. In ad-
dition to these sub-problems, the non-iterative algorithm features spectral clustering using
an asymmetric distance matrix. More specifically, a clustering method by weighted cuts in
directed graphs is employed to find a partitioning of the entire data set into disjoint clusters,
exploiting the asymmetry in the distance matrix. The method is based on a generalization
of the original spectral approach involving symmetric matrices. The asymmetric distance
matrix stems from curved manifolds estimated around the local neighborhood of points,
and projecting all (typically other) points onto this manifold, and measuring the distance
between point and its foot point. Spectral clustering reveals points that naturally group to-
gether, i.e. groups of points that are captured by the same polynomial relationship, which is
what we ultimately seek. Spectral clustering is investigated in Section 3.4.

Once a spectral clustering of data is available, we may use it to seed an algorithm with
potentially higher accuracy but higher sensitivity to the initial state, which would refine the
grouping discovered by spectral clustering. A manifold clustering algorithm in flavor of k-
planes, e.g. the iterative algorithm for manifold clustering in Section 3.1 using the nonlinear
Koopmans method [66] or consistent algebraic least squares [42, 48] for estimation and Eu-
clidean distance for projection can be used to refine both data point grouping and parameter
estimates.

Example 9. Effectiveness of manifold clustering algorithms. Figure 3.3 illustrates the effec-
tiveness of the proposed non-iterative manifold algorithm, comparing it to other manifold
clustering algorithms that use either locality and connectivity information or the kernel trick,
executed on the same data set. 440 data points have been generated along four intersecting
ellipsoids, with no points sampled along the inner arcs, as in Figure 1.2. Data are polluted
with medium level of Gaussian noise, σ = 0.125. The data set features the following impor-
tant properties that manifold clustering algorithms should cope with: (1) data have been
sampled from nonlinear surfaces that originally intersect, which has been identified [59] as
a major challenge for such algorithms; (2) data points form a single shape yet the shape has
natural partitions it can be broken down into, which may prove difficult for some algorithms
that are steered towards connectedness; (3) data is noisy.

The K-manifolds algorithm [59] ran with default options and was set to look for four one-
dimensional manifolds where each manifold would correspond to an ellipse. The cluster
assignment in Figure 3.3a reveals how the K-manifolds algorithm fails to capture the pres-
ence of four distinct shapes and tends towards treating the entire data set as a whole, splitting
the data set in a rather arbitrary way. This highlights a major deficiency of the K-manifolds
algorithm, namely that it can only group data points into clusters but it cannot identify the
relationship that explains them, which would help produce more insightful groupings. The
weakness of the K-manifolds algorithm lies with the junctions where it fails to detect the
discontinuity (i.e. split data points between the two ellipses involved).
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Figure 3.3: Comparison of manifold clustering algorithms. The K-manifolds algorithm and Kernel
Spectral Curvature Clustering (KSCC) are significantly outperformed by the proposed non-iterative
algorithm.

Similar results are obtained with Kernel Spectral Curvature Clustering (KSCC) [12, 11],
which are shown in Figure 3.3b. As a kernel function, the standard quadratic polynomial
kernel k(x, y) = 〈

x, y
〉+ 〈

x2, y2
〉

has been chosen where the operator •2 is to be understood
element-wise and 〈•, •〉 stands for dot product. Even while KSCC is also inspired by nonlinear
transformation, namely, it transforms the feature space into kernel space using the nonlinear
kernel function, the transformation is quite different from what we have seen in Sections 2.1
and 2.2. In fact, the choice of the proper kernel function is a key issue in KSCC, although it
is not obvious how to choose it: one function may lead to a successful clustering, whereas
another may not [12].

Finally, the outcome of the proposed algorithm is shown in Figure 3.3c. The algorithm
almost perfectly identifies the four clusters (each marker symbol type corresponds to a dif-
ferent group), and the parameter estimates obtained from the four clusters (shown with con-
tinuous lines) reflect our own intuitive decomposition. The significant difference in favor of
the proposed algorithm is explained by the fact that the algorithm uses structural informa-
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Figure 3.4: Robustness of the proposed non-iterative manifold clustering algorithm in response to
increasing level of noise.

tion (takes into account internal structure) and estimates parametric curves and surfaces,
which improves its explanation power and in turn its fitting capabilities. This is unlike the
K-manifolds algorithm, which partitions the data set but involves no parameter estimation
step, only locality and connectivity information. Like KSCC, the proposed algorithm involves
a polynomial mapping from the 2-dimensional plane into a 6-dimensional space with terms
such as x2, x y or y2. In contrast to KSCC, however, the choice of the polynomial terms in the
proposed algorithm depends only on the dimensionality of the curve or surface to be fitted
and possibly restrictions we may want to impose (e.g. fit spheres, not ellipsoids, in which
case we might use fewer parameters and omit terms such as x y), they are therefore much
more straightforward to select. Due to the freedom of the choice of the kernel function, how-
ever, KSCC can fit data sets the proposed algorithm cannot (e.g. intertwining spirals), given
the appropriate kernel function. ♣
Example 10. Robustness of the proposed manifold clustering algorithm. The noise-resilience
of the algorithm and its robustness against uneven distribution of samples is demonstrated
in Figures 3.4a, 3.4b, 3.4c and 3.4d, which show the outcome of the spectral clustering phase
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with increasing levels of Gaussian noise contaminating the original data set of 440 points,
with noise standard deviation σ = 0.15, σ = 0.20, σ = 0.25 and σ = 0.30, respectively. The
distribution of data points is not even: points in the top right quadrant are twice as numer-
ous as points in the bottom left quadrant, while the other two quadrants have approximately
equal number of points. The pattern how data points have been sampled from the ellipses
they originate from matches Figure 1.2 (as well as Example 9). The continuous lines show
the curves whose parameters have been estimated from the clusters the proposed manifold
clustering algorithm has identified. As illustrated in Figures 3.4a, 3.4b, 3.4c and 3.4d, even
with substantial noise, when the points themselves hardly lie along ellipses any more, the
algorithm is able to identify the four different shapes, albeit with worse precision. This con-
trasts sharply with other algorithms, such as K-manifolds or KSCC, which are rather sensitive
to noise. ♣

3.3 Projection

Effective projection algorithms are a key to a manifold clustering algorithm, as they are the
most resource-intensive step in the process. Every data point has to be projected to each
curve and surface estimated in order to determine their foot points. Using the distance of
the original point and its foot point, we may define an asymmetric distance measure, and
can eventually map each point to the curve or surface it lies closest to.

Even while projection to a linear hypersurface (such as lines or planes) is easily accom-
plished, quadratic hypersurfaces (such as conics or quadrics) pose a greater demand on
computer resources. Fortunately, an in-depth analysis of the special cases of quadratic curves
and surfaces reveals an approach that computes foot points in a simple manner, with stan-
dard Newton’s method. The specifics of the approach depend on the type of quadratic curve
or surface to project to but otherwise the projection algorithm can be efficiently imple-
mented on a parallel architecture, e.g. a general-purpose graphics processing unit (GPGPU).

3.3.1 Projection for linear data function

When linear estimation is used, the foot point is calculated as a simple point–line or point–
plane distance. Let n be the normalized line or plane normal vector and c the constant in
the Hessian normal form equation of the plane

L(x) = n ·x+ c = 0

such that θ> = [
n> c

]
up to scaling by a constant. In such a case, the (signed) distance

between the point and the line or plane is given by the projection

di = n ·xi + c.

3.3.2 Projection for general quadratic data function

When quadratic estimation is used, obtaining the foot point is not as straightforward as in
the linear case [22]. A quadratic curve in two dimensions or a quadric surface in three di-
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mensions can be recast in the form

Q(x) = x>Ax+b>x+ c = 0 (3.1)

where A is a symmetric matrix such that

θ> = [
symvec(A)> b> c

]
where symvec(A) stacks the upper triangular part of the matrix A including the main diag-
onal into a column vector. Geometrically, the closest point x on the curve or surface to an
arbitrary point w (typically not on the curve or surface) must satisfy the condition that w−x
is normal to the surface. Since the surface gradient ∇Q(x) is normal to the surface, the alge-
braic condition for the closest point is

w−x = t∇Q(x) = t (2Ax+b)

for some scalar t . Therefore, x = (I+2tA)−1(w− tb) where I is the identity matrix.
Instead of immediately replacing x in the quadratic equation, factor A using an eigende-

composition to obtain A = RDR> where R is an orthonormal matrix whose columns and D is
a diagonal matrix whose diagonal entries are eigenvectors and eigenvalues of A, respectively.
Then

x = (I+2tA)−1(w− tb)

= (RR>+2tRDR>)−1(w− tb)

= {
R(I+2tD)R>}−1

(w− tb)

= R(I+2tD)−1(α−tβ)

where

α= R>w β= R>b.

Re-substituting into the quadratic equation (3.1),

0 = (α−tβ)>(I+2tD)−1D(I+2tD)−1(α−tβ)

+ β(I+2tD)−1(α−tβ)+ c

which is an at most fourth-degree polynomial for two dimensions, and an at most sixth-
degree polynomial for three dimensions in terms of the scalar variable t . Once the roots tk

are found, they can be substituted into

xk = (I+2tA)−1(w− tk b)

where the smallest distance yields the foot point we seek:

xi = argmin
xi ,k

∥∥xi ,k −wi
∥∥2 .
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3.3.3 Projection to specific quadratic curves and surfaces

Finding the foot points can be simplified further if the type of the quadratic curve or surface
can be identified or constrained. Ellipses and ellipsoids, in particular, are important special
cases; algorithms for other quadratic curves and surfaces can be derived in a similar man-
ner. This section presents the outline for fast and reliable projection algorithms for ellipses
[23] and ellipsoids [14]. The algorithms use few iterations and guarantee convergence to
the correct projection. (The detailed algorithms for ellipses and ellipsoids, as well as other
quadratic curve and surface types are discussed in Appendix A.)

3.3.3.1 Projection to an ellipse

Without loss of generality, we can assume the ellipse is in its canonical form, i.e. it is axis-
aligned and centered at the origin. If not, a transformation matrix M that axis-aligns and
centers the ellipse can be applied to the data points, and the inverse transformation matrix
M−1 to the computed foot points. Thus, let the ellipse be defined as

Q(x) = x2
1

a2
+ x2

2

b2
−1 = 0.

Due to symmetry, it is enough to work in the first quadrant (i.e. for both data point coordi-
nates we have w1 > 0 and w2 > 0), in which case the projection point will also be in the first
quadrant (i.e. x1 > 0 and x2 > 0). Other points can be reflected to the first quadrant about the
axes, and then the projection point can be reflected back.

For the distance between a data point w = [
w1 w2

]
and a foot point x = [

x1 x2
]

to
be minimum, the distance vector must be normal to the ellipse, which means that the ellipse
gradient vector and the distance vector should be equal up to magnitude. This implies (after
rearrangements) that

x1 = a2w1

t +a2
x2 = b2w2

t +b2

where t is a scalar where t < 0 for the inside and t > 0 for the outside of the ellipse. After
substitutions, we have

Q(t ) = 1

a2

(
a2w1

t +a2

)2

+ 1

b2

(
b2w2

t +b2

)2

−1

=
( aw1

t +a2

)2
+

(
bw2

t +b2

)2

−1.

which we need to solve for Q(t ) = 0. Inspecting the first and second derivatives in the do-
main of interest, the function Q(t ) is strictly monotonic decreasing and concave, therefore a
unique root t of Q(t ) must exist. One way to find this root is using Newton’s method, which
may be initialized [23] with

t0 = bw2 −b2

or for faster convergence [14] with

t0 = max
(
aw1 −a2, bw2 −b2) .
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3.3.3.2 Projection to an ellipsoid

With canonical coordinates, an ellipsoid is defined as

Q(x) = x2
1

a2
+ x2

2

b2
−1 = 0

where for the semi-axes we have a = b = c > 0. Due to symmetry, our investigation may be
restricted to w1 > 0, w2 > 0 and w3 > 0 for data points, and likewise x1 > 0, x2 > 0 and x3 > 0
for projection points. After substitutions, we get

Q(t ) =
( aw1

t +a2

)2
+

(
bw2

t +b2

)2

+
( cw3

t + c2

)2
−1

where we seek Q(t ) = 0. Calculating the derivatives and inspecting behavior in the domain
of interest, we find that the function Q(t ) is monotonically decreasing and concave. Starting
Newton’s method at any point t0 where Q(t0) > 0, specifically

t0 = max
(
aw1 −a2, bw2 −b2, cw3 − c2)

will converge to the unique solution.

3.4 Spectral clustering

One approach to identifying groups in a data set with a notion of an affinity matrix is spectral
clustering [57, 51]. Spectral clustering is a non-iterative approach to split data into k groups,
where the number k is known in advance. Conceptually, spectral clustering operates on
an undirected complete graph where nodes correspond to data points, and edge weights
correspond to the affinity measure between data points, and our goal is to find a best cut
that splits the graph into k components, minimizing the weight of edges that run in between
components. A typical way of generating an affinity measure is to use inverse distances, i.e.
the closer the point, the larger its affinity measure.

Traditional spectral clustering is initialized with a symmetric scatter matrix SS (where the
subscript S stands for symmetric) with entries si j between 0 and 1, not at all similar and most
similar, respectively. A possible way to convert a distance matrix (whose entries are squared
distances) into a scatter matrix is via the exponential function with a negative exponent.
With a symmetric distance matrix, this operation is straightforward, i.e.

SS = exp(−αA)

where the matrix A denotes a (symmetric) distance matrix and the operator exp(•) is to be
understood element-wise and the scaling factor α > 0 is a scalar parameter. For algorithms
that use point-to-point distances, such as the standard k-means algorithm, the matrix A is
inherently symmetric. With an asymmetric distance matrix A whose entry ai j represents the
distance between data points xi and x j , we might force symmetry of the scatter matrix with

SS = exp
(
−α

√
A>A

)
where the operators exp(•) and

p• are again to be understood element-wise.
Once we have a scatter matrix SS , we may proceed as follows:
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Figure 3.5: Asymmetric distance with spectral clustering. Proximity based on data projection yields
an asymmetric distance measure.

• Normalize the scatter matrix SS . Let

di = 1√∑
j [SS]i j

and DS = diag(di ) such that
HS = I−DSSSDS

.

• Compute the smallest eigenvectors of the matrix HS = UΛU> where

U matrix of eigenvectors
ui the i th smallest eigenvector
Uk the bottom k smallest eigenvectors u1, u2, . . . arranged in a matrix
λi the i th smallest eigenvalue
Λk a diagonal matrix of the bottom k smallest eigenvalues λ1, λ2, . . .

• Perform a k-means clustering on UkΛ
− 1

2
k . The clusters are the result of the spectral

clustering algorithm.

Unfortunately, such an approach destroys any asymmetry present in the original problem
and may produce largely suboptimal results. In particular, when we identify the optimal
neighborhood around each point, estimate parameters of the associated local model, and
project data points to the estimated surface, the procedure we execute produces an asym-
metric distance matrix. This is illustrated in Figure 3.5, in which the continuous line shows
the ellipse estimated from the points that form the neighborhood of the data point with the
filled triangle markerN, whereas the dashed line depicts the ellipse that belongs to the neigh-
borhood of the point with the filled rectangle marker ■. Both the triangle marker point N

62



projected to the dashed line ellipse and the square marker point ■ projected to the the con-
tinuous line ellipse yield foot points that are relatively near to their originals, but these dis-
tances are usually not equal, as one can verify from the figure. This means that the distance
of N to ■ is not in general equal to the distance of ■ to N.

Formally, we may define a measure ai j that represents the distance of data point xi from
its foot point obtained by projecting xi onto the surface around x j , the latter of which is
defined by parameters θN (x j ).

Definition 7. Asymmetric distance measure for point–projection distances. Let

ai j = d
(
xi , p

(
θN (x j ), xi

))
where d denotes (point-to-point) Euclidean distance and p (θ, xi ) denotes the projection of
the point xi to the curve or surface defined by θ, and θN (x j ) are the parameters of the curve
or surface estimated from the set of points N (x j ), which is the local neighborhood of x j .
Unlike in the case of the standard notion of distance, we have in general ai j 6= a j i . ■

With reference to Figure 3.5, we have

aN■ = d
(
N, p

(
θN (■), N

))= d
(
N, p ( , N)

)= dP (N, )

a■N = d
(■, p

(
θN (N), ■

))= d
(■, p ( , ■)

)= dP (■, )

where dP denotes point-to-line (point-to-surface) distance (where the subscript P stands for
projection).

Once we have a definition of asymmetric distance, iterating over all data points yields an
asymmetric distance matrix A whose entry ai j represents the distance of data point xi from
its foot point obtained by projecting xi onto the surface around x j , defined by parameters
θN (x j ).

Definition 8. Asymmetric distance matrix. Let ai j denote the asymmetric distance between
points xi and x j . The asymmetric distance matrix is defined as

A = [
ai j

]
.

■

It is natural to carry over the asymmetry in the distance measure to the affinity matrix.

Definition 9. Asymmetric affinity measure. With an asymmetric distance matrix A, the asym-
metric affinity measure may be defined as

SA = exp(−αA)

where the operator exp(•) is to be understood element-wise and α> 0 is a scalar parameter.
(The subscript A in SA stands for asymmetric.) ■
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With an asymmetric affinity measure, we may employ an algorithm that exploits the dis-
tance asymmetry in the original problem. Such an approach has been successfully applied
in various disciplines. For instance, analyzing pen trajectories of handwritten characters
collected using a graphics tablet leads to an asymmetric affinity measure [7]. Here, the data
consists of the velocity and pen tip force information obtained from the device, and directed
dynamic time warping distance may be used to compare pen trajectories to a set of refer-
ence trajectories. Dynamic time warping is an algorithm for measuring similarity between
two sequences which may vary in time or speed to find an optimal match between them.
The sequences are warped non-linearly in the time dimension to determine a measure of
their similarity independent of certain nonlinear time-domain variations. The asymmetry
arises from the different roles the trajectories have: the actual trajectories to be matched are
always compared to the provably correct reference trajectories. Similar reasoning may be
applied to vehicle trajectories tracked at an intersection even if the distance measure used is
different [7].

Asymmetric spectral clustering, an algorithm to find a best cut in a weighted graph [50],
remedies the asymmetry issue by procrastinating enforcing symmetry to a later phase of the
algorithm. Let SA be the (asymmetric) matrix initialized with entries si j between 0 and 1, not
at all similar and most similar, respectively. The steps of the algorithm are as follows:

• Normalize the matrix SA. Let

di =
√

1∑
j [SA]i j

and DA = diag(di ) such that

HA = I− 1

2
DA(SA +S>

A )DA

• Compute the smallest eigenvectors of the scatter matrix HA = UΛU> where U is a ma-
trix of eigenvectors and aΛ is a diagonal matrix of eigenvalues.

• Normalize the rows of Uk to unit length. Uk is a matrix of the bottom k smallest eigen-
vectors with u1, u2, . . . arranged in a matrix.

• Perform a k-means clustering on normalized Uk .

Note that even while asymmetric spectral clustering also starts with a symmetric matrix
SA +S>

A , the normalization matrix DA is computed based on the asymmetric matrix SA, un-
like (symmetric) spectral clustering where the normalization DS is based on the already sym-
metric SS . The row index i of the matrix SA represents data points and the column index j
represents estimated curves or surfaces, and the entry [SA]i j can be interpreted as a support
weight of the data point i in favor of the estimated curve or surface j . The normalization DA

makes all data points cast unit support in favor of the total number of estimated curves and
surfaces, and the asymmetric clustering tends to avoid separating the data point from the
curve or surface it has large support for.
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3.5 Summary

In this chapter, we have extended our scope of the parameter estimation problem and ex-
plored the field when data are no longer covered by a single nonlinear function but a union
of such functions. This has led us to the clustering problem, where our task is not merely es-
timating the unknown parameters of the function that relates the data but also discovering
a feasible partitioning the data.

We have seen an iterative algorithm for the so-called manifold clustering problem, which
mimics the standard iterative algorithm for k-means, albeit the clustering objective, the up-
date and assignment steps are different. The algorithm is initialized with random points, the
neighborhood of which gives the first manifold parameter estimates for the algorithm. The
update step computes model parameter estimates from a scattered point cloud, assuming
an assignment of points to groups, whereas the assignment step amounts to a projection to
the closest manifold whose parameters have been computed by the update step. Projection
is a computationally expensive step but for the important special cases of quadratic curves
and surfaces, efficient algorithms have been shown to lead to fast convergence.

Iterative algorithms require initialization and possibly re-sampling to avoid the algorithm
converging to a sub-optimal solution. Non-iterative algorithms, in contrast, can reliably de-
liver a best-possible solution. We have seen how the choice of an appropriate asymmetric
distance measure and in turn asymmetric spectral clustering on the resulting affinity matrix
may help us craft a non-iterative manifold clustering algorithm, which may both serve as
input for an iterative algorithm and be a clustering algorithm of its own.

New scientific contributions related to the clustering problem include:

• an iterative algorithm for manifold clustering based on alternating optimization;

• utilizing unconstrained and constrained parameter estimation methods for the update
step of the clustering algorithm;

• applying efficient projection algorithms to facilitate the assignment step of the clus-
tering algorithm;

• a non-iterative algorithm for manifold clustering supported by spectral clustering;

• an asymmetric distance measure that leads to a sound pairwise distance measure be-
tween data points;

• applying asymmetric spectral clustering for minimizing the distance of intra-cluster
data points.
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CHAPTER

4
Dynamic systems

Parameter estimation of linear discrete-time dynamic errors-in-variables systems where the
system description is known up to a few model parameters is a classical problem when Gaus-
sian noise contaminates both input and output observations but the ratio of these noise con-
tributions is a priori known. In such a case, a maximum likelihood estimator is the standard
tool to derive the provably best attainable parameter estimates from second-order statistical
characteristics. The maximum likelihood estimator takes noise-polluted input observations
u, noise-polluted output observations y, relative noise distribution information represented
as an angleϕ ∈ [0, π2 ] (ranging from no output noise through equal input and output noise to
no input noise), and produces model parameter estimates ĝ that approximate the true model
parameters g, and an estimate µ̂ for the noise magnitude µ. In contrast, a situation where
no information on the relative noise distribution ϕ is available is recognized as a more dif-
ficult problem and the maximum likelihood estimator cannot be employed. In fact, it turns
out that under general assumptions, the system is not identifiable, or put alternatively, it
produces many equivalent results [58, 3].

While there has been more substantial research into estimating model and noise param-
eters of linear dynamic errors-in-variables systems, less attention has been paid to nonlinear
systems, some exceptions are [43, 66]. However, most physical systems are inherently non-
linear, even if they are usually approximated with linear models for a particular operating
range. A polynomial approximation being a natural approach to deal with a nonlinear sys-
tem, polynomial models allow more satisfactory approximation for nonlinear processes over
wider ranges of operation, increasing the accuracy and applicability of the models [54].

This chapter explores an estimation scheme for dynamic errors-in-variables systems that
are captured with the separable implicit relationship

f>d at a(x̄m,k )fpar (g) = 0

where fd at a : R2m →R2n is a polynomial lifting (linearization) function that maps the (input
and output) observation vector

xm,k = [
yk ... yk−m uk ... uk−m

]>
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of a dynamic system with order m to n linear and nonlinear components. For simplicity, we
assume the nonlinear components are polynomial functions of input and output variables.

Example 11. Observations of a dynamic system transformed by a lifting function. Suppose
a dynamic system is described with the following difference equation:

ȳk = g1 ȳk−1 + g2 ȳk−2 + g3ūk−1 +
+ g4ū2

k−1 + g5 ȳk−1 ȳk−2

+ g6ūk−1 ȳk−1

comprising of both linear and polynomial terms as well as cross-correlating terms. Clearly,
the lifting function for data is

fd at a(xk ) = [
ȳk ȳk−1 ȳk−2 ūk−1 ū2

k−1 ȳk−1 ȳk−2 ūk−1 ȳk−1
]>

.

♣

In order to give background for nonlinear methods, we shall first look into existing meth-
ods for estimating parameters of linear dynamic errors-in-variables systems in Section 4.1,
and the challenges such an estimation problem poses. Linear methods can be categorized
into two main groups: methods with a known relative noise distribution between input
and output, and methods without such information. The Koopmans–Levin method (Sec-
tion 4.1.1), the maximum likelihood method for dynamic systems (Section 4.1.2) and the
generalized Koopmans–Levin method (Section 4.1.3), which alloys the two, fall into the first
group with known relative noise distribution. In contrast, bias-compensated least squares
(Section 4.1.4) and the Frisch scheme (Section 4.1.5) are able to estimate model and noise pa-
rameters simultaneously. After discussing linear errors-in-variables systems, we shall move
on to nonlinear systems in Section 4.2, in which the polynomial bias-compensated least
squares (Section 4.1.4), which is known from literature, will be compared to a polynomial
extension of the generalized Koopmans–Levin method (Section 4.2.2), which is a new con-
tribution in this thesis.

4.1 Linear systems

Consider a linear discrete-time single-input single-output (SISO) errors-in-variables system
G(q−1), which is described by the so-called difference equation

A(q−1)ȳk = B(q−1)ūk (4.1)

where ȳk and ūk are the (noise-free) output and input data, respectively, at time instant k,
and q−1 denotes the backward shift operator such that q−1ūk = ūk−1 and

A(q−1) = 1+a1q−1 +·· ·+ama q−ma

B(q−1) = b1q−1 +·· ·+bmb q−mb
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such that the difference equation (4.1) expands to

ȳk +a1 ȳk−1 +·· ·+ama ȳk−ma = b1ūk−1 +·· ·+bmbūk−mb . (4.2)

For simplicity, we assume that m = ma = mb, but we will see it later that it is relatively easy
to relax this assumption. For notational convenience, observations and parameters can be
stacked into vectors y and u as well as a and b, respectively.

Definition 10. Let

xy
m,k = [

yk . . . yk−m
]>

xu
m,k = [

uk . . . uk−m
]>

where m is the known order (memory) of the dynamic system. Then the observation vector
at time instant k is

xm,k =
[

xy
m,k

xu
m,k

]
.

■
Definition 11. Let

φ
y
m,k = [

yk−1 . . . yk−m
]>

φu
m,k = [

uk−1 . . . uk−m
]>

where m is the known order (memory) of the dynamic system. Then the least-squares obser-
vation vector at time instant k is

φm,k =
[
φ

y
m,k

φu
m,k

]
.

■
Definition 12. Let

ga = [
1 a1 . . . am

]>
gb = [

0 −b1 . . . −bm
]>

.

Then the model parameter vector for the investigated system is

g =
[

ga

gb

]
.

■
Using the compact definition for the observation vector and the model parameter vector,

the system description in (4.2) simplifies into

x̄>
m,k g = 0
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where x̄m,k comprises of noise-free data. From the formula above, it can be seen that the
model parameter vector is invariant to scaling, i.e. it is only defined up to multiplication by
a scalar. Hence, we assume that

∥∥g
∥∥2 = g>g = 1.

However, in the errors-in-variables context, one is never able to directly observe the
true data vector, only its noise-contaminated equivalent xm,k = x̄m,k + x̃m,k where x̃m,k ∼
N (0, Cµ,ϕ,m) is a zero-mean Gaussian noise contribution with covariance Cµ,ϕ,m .

Definition 13. Let σ2
u and σ2

y be the variances of the noise that pollutes input and output
observations, respectively. Let the normalized unit noise covariance be

Cϕ =
[

sin2ϕ 0
0 cos2ϕ

]

and the (unnormalized) unit noise covariance be

Cµ,ϕ =µCϕ

where µ is the measure of noise “magnitude” and ϕ is the measure of noise “direction” (i.e.
relative distribution of noise between input and output, with the extreme cases ϕ= 0 being
input-only noise and ϕ= π

2 being output-only noise). Then the normalized noise covariance
matrix is

Cϕ,m = Cϕ⊗ Im

and the noise covariance matrix is

Cµ,ϕ,m = (
µCϕ

)⊗ Im .

■

The best understood estimation methods for identifying linear dynamic errors-in-vari-
ables systems are perhaps those that assume a known noise ratio, i.e. a known relative dis-
tribution of noise between input and output (up to magnitude). We shall investigate three
strategies for estimating model parameters and noise magnitude. Section 4.1.1 introduces
the simplest strategy inspired by the (linear) Koopmans estimator [40] that exhibits the most
crude accuracy. Section 4.1.2 discusses the maximum likelihood estimator that delivers the
best possible estimates but is computationally cumbersome. Section 4.1.3 shows an estima-
tion strategy that is a compromise between the two, a scalable trade-off between the Koop-
mans approach and the maximum likelihood approach.

Unfortunately, not every estimation problem assumes a known relative distribution of
noise between input and output. In a more general linear errors-in-variables problem for
dynamic systems, we have to estimate both model parameters as well as noise parameters.
In what follows, two methods that tackle the problem of unknown noise ratio will be investi-
gated: the bias-compensating least-squares estimator (Section 4.1.4) and the Frisch scheme
(Section 4.1.5).
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4.1.1 Koopmans–Levin estimator

One of the simple methods to devise model parameter estimates when the normalized unit
noise covariance matrix Cϕ is known has been proposed by Levin [44] extending the work of
Koopmans [40] for static systems, and can be termed the Koopmans–Levin method. This is a
non-iterative but fairly inaccurate method to estimate model parameters from second-order
statistical characteristics.

For convenience, let us introduce the observation matrix and the observation (sample)
covariance matrix.

Definition 14. Observation matrix

Xm =


ym+1 . . . y1 um+1 . . . u1

ym+2 . . . y2 um+2 . . . u2
...

...
...

...
yN . . . yN−m uN . . . uN−m


N−m, 2(m+1)

■
Definition 15. Observation covariance matrix

Dm = E
{
(xm −Exm) (xm −Exm)>

}
≈

1

N

N∑
k=1

(
xm,k −

1

N

N∑
k=1

xm,k

)(
xm,k −

1

N

N∑
k=1

xm,k

)>
■

The Koopmans–Levin estimator uses the principle that

Dm = D̄m +Cµ,ϕ,m

i.e. the observation covariance matrix can be decomposed into a contribution by the noise-
free data D̄m and the noise contribution Cµ,ϕ,m . Multiplying by g from both sides,

g>Dmg = g>D̄mg+g>Cµ,ϕ,mg = g>Cµ,ϕ,mg

as
g>D̄mg = g>X̄>

mX̄mg

where X̄mg = 0 by definition.
Finding a model parameter vector g that satisfies

g>Dmg = g>µCϕ,mg

g>g = 1

is a generalized eigenvalue problem and the optimum solution is the eigenvector g that be-
longs to the smallest eigenvalue µ.
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In the same fashion as with total least-squares estimation for the static case [20], the
accuracy of the estimates can be improved if we use singular value decomposition instead of
eigenvalue decomposition. Reformulating,

g>X>
mXmg = g>µL>

ϕ,mLϕ,mg

g>g = 1

where L>
ϕ,mLϕ,m = Cϕ,m , hence the parameters are estimated as a generalized singular value

problem on the matrix pair (Xm , Lm). The right singular vector g that belongs to the smallest
singular value s where s2 =µ is the parameter vector we seek.

4.1.2 Maximum likelihood estimator

The maximum likelihood estimator maximizes the likelihood function which can be formu-
lated for the dynamic case as

p(xN |g) ∝ exp

(
−1

2
(xN − x̄N )>C−1

N (xN − x̄N )

)
(4.3)

where N is the number of observations,

xN =
[

xy
N

xu
N

]
xy

N = [
yN . . . y1

]>
xu

N = [
uN . . . u1

]>
and x̄N is defined likewise, and CN = (µCϕ)⊗ IN .

Definition 16. Let

Ga
N =



1 0 0 . . . 0 0
a1 1 0 . . . 0 0
a2 a1 1 . . . 0 0
...

...
...

. . .
...

...
am am−1 am−2 . . . 0 0
0 am am−1 . . . 0 0
0 0 am . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . am am−1

0 0 0 . . . 0 am


N , N−m

wherein Ga
N is a banded Toeplitz matrix of parameters ai . Let Gb

N be defined in a similar way
in terms of bi . Then

GN =
[

Ga
N

−Gb
N

]
2N , N−m

is the model parameter matrix for the maximum likelihood estimator. ■

72



Using the model parameter matrix, it follows that x̄>
N GN = 0 for noise-free data and true

model parameters. Taking this constraint into consideration,

JML = 1

2
(xN − x̄N )>C−1

N (xN − x̄N )

= 1

2
(xN − x̄N )>GN

(
G>

N CN GN
)−1

G>
N (xN − x̄N )

= 1

2
x>

N GN
(
G>

N CN GN
)−1

G>
N xN

the likelihood function (4.3) is equivalent to minimizing the loss function

JML = 1

2
x>

N GN
(
G>

N CN GN
)−1

G>
N xN . (4.4)

As a result, estimating the parameters of the system is achieved by minimizing JML in (4.4).
However, the matrices involved in JML are rather large and devising efficient algorithms

that estimate its true value is not straightforward, see [67] for a possible approach.

4.1.3 Generalized Koopmans–Levin estimator

The Koopmans–Levin estimator provides a simple non-iterative way to estimate model pa-
rameters but the variance of estimates is fairly large. Meanwhile, the maximum likelihood
estimation approach is much more robust but involves more unknowns, hence entails a
greater computational complexity, and is typically formulated with an iterative approach.
The generalized Koopmans–Levin estimator [65] unifies the Koopmans–Levin and maxi-
mum likelihood algorithms. The unified algorithm incorporates a scaling parameter q that
allows us to freely trade estimation accuracy for efficiency.

Definition 17. Let q be an integer such that m 5 q < N , where m is the system model order
(memory) and N is the number of observations. Then the extended observation vector at
time instant k is

xq,k = [
yk . . . yk−q uk . . . uk−q

]>
.

■
Apparently, the appropriate choice of q returns the observation vector of the Koopmans–

Levin estimator and the maximum likelihood estimator as special cases: q = m is the ob-
servation vector the Koopmans–Levin method uses, while q = N − 1 yields the single large
vector in the likelihood function. Following the principle of the extended observation vec-
tor, extended versions of the observation matrix and the observation covariance matrix may
be introduced.

Definition 18. Extended observation matrix

Xq =


yq+1 . . . y1 uq+1 . . . u1

yq+2 . . . y2 uq+2 . . . u2
...

...
...

...
yN . . . yN−q uN . . . uN−q


N−q, 2(q+1)

■
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Definition 19. Let

Ga
q =



1 0 0 . . . 0 0
a1 1 0 . . . 0 0
a2 a1 1 . . . 0 0
...

...
...

. . .
...

...
am am−1 am−2 . . . 0 0
0 am am−1 . . . 0 0
0 0 am . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . am am−1

0 0 0 . . . 0 am


q, q−m

where Ga
q is banded Toeplitz matrix of parameters ai . Assuming Gb

q can be constructed in a
similar manner, the extended model parameter matrix is

Gq =
[

Ga
q

−Gb
q

]
.

■
Similarly to the case of the maximum likelihood estimation, X̄q Gq = 0 is satisfied. Like-

wise, matrices Dq and Cq can be defined in analogy to Dm and Cm . With these notations at
hand, the loss function of the generalized Koopmans–Levin estimator takes the form

JGK L = 1

2
trace

{(
G>

q Cq Gq

)−1
G>

q Dq Gq

}
. (4.5)

Straightforward calculations show that JGK L yields JK L and JML with the special choices
q = m and q = N −1. First, let q = m, in which case Gm = g, i.e.

JGK L = 1

2
trace

{(
g>Cmg

)−1
g>Dmg

}
= g>Dmg

g>Cmg
= JK L

as the terms g>Cmg and g>Dmg involved are scalars.
Second, using the identity trace(AB) = trace(B A),

JGK L = 1

2
trace

{
Xq Gq

(
G>

q Cq Gq

)−1
G>

q X>
q

}
.

Let q = N −1, in which case Xq = xN where

x>
N = [

yN . . . y1 uN . . . u1
]

and therefore

JGK L = 1

2
trace

{
x>

N GN
(
G>

N CN GN
)−1

G>
N xN

}
= 1

2
x>

N GN
(
G>

N CN GN
)−1

G>
N xN = JML ,

again with omitting the trace operator on a scalar argument.
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Minimizing the objective function with an iterative scheme

In order to avoid directly minimizing the objective function 4.5, it is possible to employ an
iteration scheme. Upon each iteration, the objective function

e =
trace

{(
G>

q,(k)Cq Gq,(k)

)−1
G>

q,(k+1)Dq Gq,(k+1)

}
trace

{(
G>

q,(k)Cq Gq,(k)

)−1
G>

q,(k+1)Cq Gq,(k+1)

}
is minimized where Gq,(k) = Gq (g(k)) comes from the previous iteration and

Gq,(k+1) = Gq (g(k+1))

is the variable with respect to which the optimization is performed. For brevity,

L>L = L>
q Lq = Cq

G = Gq,(k+1)

g = g(k+1)

and use QR-decomposition on the matrix M>M = R>Q>QR = R>R such that

QCG RCG = Lq Gq,k

QX RX = Xq

yielding

e =
trace

{(
R>

CG RCG
)−1

G>R>
X RX G

}
trace

{(
R>

CG RCG
)−1

G>L>LG
}

= trace
{

R−>
CG G>R>

X RX GR−1
CG

}
trace

{
R−>

CG G>L>LGR−1
CG

}
= vec

{
RX GR−1

CG

}>
vec

{
RX GR−1

CG

}
vec

{
LGR−1

CG

}>
vec

{
LGR−1

CG

}
= vec{G}>

(
R−1

CG ⊗R>
X

)(
R−>

CG ⊗RX
)

vec{G}

vec{G}>
(
R−1

CG ⊗L>)(
R−>

CG ⊗L
)

vec{G}

= g>T> (
R−1

CG ⊗R>
X

)(
R−>

CG ⊗RX
)

Tg

g>T> (
R−1

CG ⊗L>)(
R−>

CG ⊗L
)

Tg
.

where A−> = (
A−1

)>
and T is a sparse matrix of zeros and ones chosen such that vec(Gq ) = Tg.

The problem is tackled as a generalized singular value problem on the matrix pair{(
R−>

CG ⊗RX
)

T,
(
R−>

CG ⊗Lq
)

T
}

where the right singular vector corresponding to the smallest singular value is of interest.
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4.1.4 Bias-compensating least-squares estimator

An estimator for dynamic systems that can simultaneously estimate model and noise param-
eters is the bias-compensating least-squares estimator. Least-squares estimators are based
on the linear regression principle, which can be concisely written as an overdetermined sys-
tem of equations

y =Φθ+ε
whereΦ is an N -by-2m matrix representing N samples ofφm,k and the N -by-1 vector y cor-
responds to N samples of yk , and ε represents the error. The least-squares estimate known
from statistical literature can then be formulated for this case as

θ̂LS =Φ†y = (Φ>Φ)−1Φ>y (4.6)

where M† denotes the Moore–Penrose generalized inverse of M. In fact, the least-squares
estimate minimizes the expectation of the squared error, that is,

θ̂LS = argmin
θ
Eε2 = argmin

θ
E
(
y −φ>θ

)2
.

Unfortunately, least-squares estimation method gives consistent estimates only under
restrictive conditions, notably, only in the equation error case. Assuming white measure-
ment noises,

Φ>Φ= Φ̄>
Φ̄+ Φ̃>

Φ̃

where Φ̃ is the noise contribution, and

Φ>y = Φ̄>ȳ = Φ̄>
Φ̄θ

as ȳ = Φ̄θ according to the system model. As a result,

Φ>Φθ̂LS =Φ>y = Φ̄>
Φ̄θ =

(
Φ>Φ− Φ̃>

Φ̃
)
θ, (4.7)

which means that θ̂LS is biased due to Φ̃
>
Φ̃.

The principle of bias compensated least-squares [74] methods is to adjust the least-squares

estimate to eliminate the bias due to Φ̃
>
Φ̃. Consequently,

θ̂BC LS =
(
Φ>Φ− Φ̃>

Φ̃
)−1
Φ>y (4.8)

in which the unknown Φ̃
>
Φ̃, which depends on the noise parameters σ2

y and σ2
u has to be

estimated in some way. Therefore, once the noise parametersσ2
y andσ2

u are substituted into

the above equation, θ̂BC LS is automatically obtained.
On the other hand, if the ratio of noise variances in unknown, (4.8) contains 2m +2 un-

knowns but comprises of only 2m equations, one for each of the model parameters. Conse-
quently, additional equations have to supplement the above set of equations. One relation
can be obtained by using the minimum error VLS of the least-squares estimate

VLS = min
θLS

Eε2 = min
θLS

E
(
y −φ>θLS

)2
.
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Expanding the expected value

E
(
y −φ>θLS

)2 = Ey2 +E(
φ>θLS

)2 −2Ey
(
φ>θLS

)
= E

(
ỹ + ȳ

)2 +E(
φ>θLS

)2

= Eỹ2 +Eȳ2 +2Eỹ ȳ +E(
φ>θLS

)2

= σ2
y +Eȳ2 +E(

φ>θLS
)2

.

where we have used that

Ey
(
φ>θLS

) = Ey E
(
φ>θLS

)= 0

Eỹ ȳ = Eỹ Eȳ = 0

since the current (zero-mean) noise contamination ỹ with Eỹ = 0 in y is not correlated with
the past (zero-mean) noise contamination inφ>θLS .

From (4.7), it follows that

θ>Φ>Φθ̂LS = θ>
(
Φ>Φ− Φ̃>

Φ̃
)
θ

and

θ̂
>
LSΦ

>Φθ̂LS = θ̂>LS

(
Φ>Φ− Φ̃>

Φ̃
)
θ.

Combining these results,

θ̂
>
LS

(
Φ>Φ− Φ̃>

Φ̃
)
θ = θ̂

>
LSΦ

>Φθ̂LS

θ̂
>
LSΦ

>Φθ− θ̂>LSΦ̃
>
Φ̃θ = θ̂

>
LSΦ

>Φθ̂LS

θ̂
>
LSΦ̃

>
Φ̃θ = θ̂

>
LSΦ

>Φθ− θ̂>LSΦ
>Φθ̂LS

= θ>Φ>
0Φ0θ− θ̂>LSΦ

>Φθ̂LS

= ȳ>ȳ− θ̂>LSΦ
>Φθ̂LS

Thus,

VLS = min
θ
Eε2 = min

θ
E
(

yk −φ>
m,kθ

)2 =σ2
y + θ̂

>
LScov

(
φ̃m,k

)
θ̂LS (4.9)

In a practical scenario, the expected value is not known but is computed using the avail-
able samples as well as the current estimates for θ. This suggests that unlike least-squares
estimation, the compensated least-squares procedure is iterative.

In order to get a second extra equation, an extended model structure should be consid-
ered. A possible extension is appending an additional −yk−ma−1 to the regressor vector φ
and a corresponding ama+1 parameter to θ (whose true value is 0) and using the extended
versions in the formulas of the original model in (4.8) (m = ma +mb):

θ ← [ −a1 . . . −ama −ama+1 b1 . . . bmb ]

φk ← [ φ>
y,k φ>

u,k ]>

φy,k ← [ yk−1 . . . yk−ma yk−ma−1 ]>

φu,k ← [ uk−1 . . . uk−mb ]>
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These additional equations allow us to infer estimates for σ2
u and σ2

y . Once these have been
estimated, the bias of the least-squares estimate is eliminated to achieve consistent esti-
mates.

The iterative bias-compensating estimation algorithm is therefore as follows [74]:

1. Set the initial value of θ̂(0) to θ̂LS according to (4.6).

2. Solve (4.9) and the equation(s) corresponding to the extended model using the current
parameter estimates θ̂(k) to get estimates for the noise elements ν̂(k+1) = [ σ̂2

y σ̂2
u ].

3. Using (4.8), compute new parameter estimates θ̂(k+1) using θ̂(k) and ν̂(k+1), and repeat
from step (2).

Provided that the iteration converges, the termination criterion is

||θ̂(k+1) − θ̂(k)||
||θ̂(k)||

< ε

where ε is some small value.
In practice, the estimates obtained with the bias-compensated least-squares method are

often rather crude, which can be significantly improved by augmenting multiple input or
output parameters, giving rise to a family of estimators, called extended bias-compensated
least-squares estimators [24, 33, 62]. As the number of equations in this case exceeds the
number of unknowns, an overdetermined system of equations has to be solved in a least-
squares sense. This means that instead of computing

θ̂BC LS =
(
Φ>Φ− Φ̃>

Φ̃
)−1
Φ>y =

(
Φ>Φ− Φ̃>

Φ̃
)−1 (

Φ>y− Φ̃>ỹ
)

where Φ̃
>ỹ ≈ 0 by independence of past and present noise contamination (white noise), we

can compute

θ̂EBC LS = (
Z>Φ− Z̃>Φ̃

)† (
Z>y− Z̃>ỹ

)
(4.10)

where Z contains so-called instruments. Z is often constructed in such a manner that it con-
tains the same set of delayed observations as found inΦ as well as some additional observa-
tions with more delay than the order m of the system. For instance, let

φ>
m,k = [

yk−1 . . . yk−m uk−1 . . . uk−m
]

then the Yule-Walker instrument vector zm,k could be built of the shifted observations

z>m,k = [
yk−1 . . . yk−m uk−1 . . . uk−m uk−m−1 uk−m−2

]
.

As with the standard bias-compensated scheme, (4.10) has 2m + 2 unknowns. Unlike the
standard scheme, however, it has as many equations as elements in the instrument vector.
Should two additional observations be added to the vector, it becomes possible to solve the
system of equations, and appending more observations can improve the conditioning of the
problem.
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4.1.5 The Frisch scheme

The Frisch scheme, another approach to estimating both model and noise parameters, pro-
vides a recursive algorithm strikingly similar to the BCLS approach so that many of its variants
may be interpreted as a special form of BCLS, operating on similar extended models [9] with
comparable performance results [34]. It is based on the idea that the sample covariance ma-
trix D̄ of the true values of observations x̄ yields the zero vector when multiplied by the true
parameter values g, i.e.

D̄g = 1

N −m
X̄>X̄g = 1

N −m
X̄>0 = 0

This implies that in terms of the measured quantities, it holds that

D̄g = (D− D̃)g = 0 (4.11)

where we have used that D = D̄+ D̃ where D̃ = D̃(σ2
y , σ2

u) is a(n estimated) covariance matrix
corresponding to white noise on both output and input. Similarly to the BCLS case, we have
more unknowns than equations in (4.11), namely, m linearly dependent unknowns in g and
the two unknowns σ2

y and σ2
u . However, assuming an estimate of σ2

u is available, σ2
y may be

computed such that the difference matrix D− D̃ is singular. First, we have

D =
[

Dy y Dyu

Duy Duu

]
in which Dy y , Dyu , Duy and Duu denote the sample covariance matrices belonging to output-
and input-related entries in x where Duy = D>

yu due to symmetry. By construction, we have
D̄yu = Dyu since the input and output noises are assumed to be independent, and D̄y y =
Dy y − D̃y y = Dy y −σ2

y I and D̄uu = Duu − D̃uu = Duu −σ2
uI:

D̄ =
[

Dy y −σ2
y I Dyu

Duy Duu −σ2
uI

]
What we seek is detD̄ = 0. Expanding the determinant we have

detD̄ = det

([
Dy y −σ2

y I Dyu

Duy Duu −σ2
uI

])
= det

(
Duu −σ2

uI
)

det
(
Dy y −σ2

y I−Dyu
(
Duu −σ2

uI
)−1

Duy

)
If the input signal provides sufficient excitation, det

(
Duu −σ2

uI
)> 0, which implies

det
(
Dy y −Dyu

(
Duu −σ2

uI
)−1

Duy −σ2
y I

)
= 0 (4.12)

Since the only unknown in the above equation is the scalar σ2
y , (4.12) is the characteristic

equation of the matrix

Dy y −Dyu
(
Duu −σ2

uI
)−1

Duy .

As we are interested in the smallest possible noise contribution, it follows that

σ2
y =λmin

(
Dy y −Dyu(Duu −σ2

uI)−1Duy
)

(4.13)
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where operator λmin (M) denotes the minimum eigenvalue of the operand matrix M.
In order to determine σ2

u , one of the more robust approaches is to compute so-called
residuals and compare their statistical properties to what can be predicted from the model
[21]. A residual is defined as

ε(t ) = A(q−1)yk −B(q−1)uk .

Introduce the covariance vector r belonging to shift k = 1 with components

ri = E (wk wk+i )

and its estimate from finite samples as

r̂i = 1

N − i

N−i∑
k=1

wk wk+i

The idea is to compute the sample covariance vector r using εk where

εk (θ̂) = Â(q−1)yk − B̂(q−1)uk

in which Â(q−1) and B̂(q−1) encapsulate current model parameter estimates, and compare
it to a theoretical covariance vector based on

εk

(
θ̂, σ̂2

y , σ̂2
u

)
= Â(q−1)ỹk − B̂(q−1)ũk

where ỹk as well as ũk are independent white noise sequences with variance as determined
by the current estimates σ̂2

y and σ̂2
u . The dimension of the covariance vector r (i.e. the maxi-

mum shift i ) is a user-supplied parameter. Essentially, we are minimizing

δ= r
(
εk (θ̂)

)− r
(
εk

(
θ̂, σ̂2

y , σ̂2
u

))
with some weights attached to the entries in r to reflect their relative importance. A possible
choice is

W =


2n

2(n −1)
. . .

1


where n is the size of r and the other entries in W are zero.

The entire algorithm runs as follows:

1. Assume an initial value for σ̂2
u .

2. Compute an estimate σ̂2
y using (4.13).

3. Compute model parameters based on (4.11).

4. Determine the residuals εk (θ̂) using estimated model parameters in Â and B̂ as well as
observed output and input sequences y(t ) and u(t ), and compute the related sample
covariance vector r̂ .
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5. Determine the theoretical reference covariance vector using residuals εk

(
θ̂, σ̂2

y , σ̂2
u

)
generated by estimated process parameters and white noise sequences ỹk and ũk where

E
(
ỹk

)2 = σ̂2
y

E (ũk )2 = σ̂2
u

Compare the sample and the reference covariance vectors by setting V =δ>Wδwhere
δ is a difference vector of covariances and W is a weighing matrix.

6. Repeat from step 1 minimizing V .

4.2 Nonlinear systems

Having seen linear errors-in-variables estimators that simultaneously produce model and
noise parameter estimates, a natural extension of these approaches is their application to
the nonlinear setting. First, we shall investigate the polynomial bias-compensated least-
squares method (Section 4.2.1), which is a generalization of the bias-compensated princi-
ple to nonlinear systems that are captured by polynomial functions. Unfortunately, bias-
compensated least squares, and especially its polynomial generalization, yields rather crude
estimates. A more promising approach is the introduction of nonlinearity in the generalized
Koopmans–Levin estimator (GKL), which has been shown to blend the advantages of the
high-accuracy maximum likelihood, and the fast and robust non-iterative Koopmans–Levin
estimators. Since the GKL method assumes a known relative distribution of noise between
input and output, an additional step is required in its nonlinear generalization, the polyno-
mial generalized Koopmans–Levin (PGKL) method (Section 4.2.2), so that it may produce a
noise ratio estimate.

4.2.1 Polynomial bias-compensated least-squares method

A natural choice for constructing an estimator that targets polynomial systems is to extend
the bias-compensated least-squares principle for linear systems to polynomial systems. As
shown in Section 4.1.4, a bias-compensated least-squares estimate takes the form

θ̂BC LS =
(
Φ>Φ− Φ̃>

Φ̃
)−1
Φ>y (4.14)

where the matrixΦ collects time-shifted output and input observations such that

Φ=


ym . . . y1 um . . . u1

ym+1 . . . y2 um+1 . . . u2
...

...
...

...
yN . . . yN−m uN . . . uN−m


and Φ̃ is the noise contribution.
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Investigating the structure of (4.14), it follows that once Φ̃
>
Φ̃ is expressed as a function of

noise parameters σ2
y and σ2

u , the bias-compensated least-squares estimate is readily avail-
able. For the linear case,

Eφφ> ≈ 1

N
Φ̃

>
Φ̃

was a simple function of σ2
y and σ2

u such that

Eφ̃φ̃
> = diag

[
σ2

y . . . σ2
y σ2

u . . . σ2
u

]
.

For the polynomial case, the situation is more complex but still tractable. With a set of identi-
ties and approximations, and exploiting the independence of time-shifted observations, one
is able to get an estimate of E fd (φ̃)f>d (φ̃):

E
(
xp

k

) = E
(
x0,k +nk

)p

E
(
n2p

k

)
= (2p −1)(2p −3) . . . 1σ2p

E
(
n2p−1

k

)
= 0

E
(
uk yk

) = E (uk )E
(
yk

)
E
(
uk uk−p

) = E (uk )E
(
uk−p

)
where p > 0

E (xi ) ≈ x̄ = 1

N

N∑
i=1

xi

The strategy is strikingly similar to that used in the case of static polynomial systems in Chap-
ter 2.1. Noisy observations are expressed in terms of the noise-free data and a noise contribu-
tion where the noise contribution may involve dependence on lower-degree unobservable
noise-free data, which are recursively expressed using the same approach.

Once an estimate of E fd (φ̃)f>d (φ̃) is available, one is able to construct the polynomial
bias-compensated estimate as

θ̂PBC LS = (
E fd (φ)f>d (φ)−E fd (φ̃)f>d (φ̃)

)−1
E fd (φ) y.

As with the linear case, one can augment the vector φ with additional observations and get
an instrument vector ω, ensuring a solution or improving the conditioning of the prob-
lem. Even while the expectation E fd (ω̃)f>d (φ̃) that thus results has entries not present in
the original E fd (φ̃)f>d (φ̃), one can rely on the very same approach of decomposition into
noise-free part and noise contribution to estimate their value. The polynomial extended
bias-compensated least squares is thus readily obtained as

θ̂PEBC LS = (
E fd (ω)f>d (φ)−E fd (ω̃)f>d (φ̃)

)† (
E fd (ω) y −E fd (ω̃) y

)
4.2.2 Polynomial generalized Koopmans–Levin method

The polynomial generalized Koopmans–Levin (PGKL) method applies the principles of the
(linear) generalized Koopmans–Levin estimator (GKL) to the nonlinear setting. As GKL inher-
its some of the accuracy of the maximum likelihood estimator it is based on, we may expect
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PGKL to exhibit similar favorable estimation accuracy. In fact, we shall see that the algorithm
produces better estimates than other methods, in particular PBCLS.

The scheme comprises of two independent steps:

1. estimating model parameters θ and noise magnitude µwith given relative distribution
of noise ϕ over input and output noise ratio (known input/output noise ratio), and

2. estimating the relative distribution of noise ϕ.

Estimation of model parameters and noise magnitude can be broken down into estimat-
ing θ = fpar (g) given f>d at a(x̄m,k ), and approximating θ such that fpar (g) ≈ θ, possibly alter-
nating between the two objectives with an iterative algorithm. For estimating θ, the vector
f>d at a(x̄m,k ) is assumed to consist of blocks with elements in decreasing order of time of ob-
servation, e.g. one block of f>d at a(x̄m,k ) could be[

u2
k yk . . . u2

k−m+1 yk−m+1
]>

.

Let

Cq = µC⊗ Iq

θp = [
p0 . . . pm

]>
Gq =


Gθ1

q

Gθ2
q
...



G
θp
q =



p0 0 0 . . . 0 0
p1 p0 0 . . . 0 0
p2 p1 p0 . . . 0 0
...

...
...

. . .
...

...
pm pm−1 pm−2 . . . 0 0
0 pm pm−1 . . . 0 0
0 0 pm . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . pm pm−1

0 0 0 . . . 0 pm


q,q−m

where pn are the parameters corresponding to data elements in a block in decreasing order
of time.

Let Cq (µ) = E(
zmz>m

)−E(
z̄m z̄>m

)
be a precomputed polynomial in terms of the free scalar

µ whose coefficients are matrices that represent the noise covariance structure. As E
(
z̄m z̄>m

)
is not at our disposal, Cq (µ) is approximated from observations, i.e. Cq (µ) ≈ Cq (µ, X). The
approach is similar to that discussed in Section 2.1.6, with an additional expectation inde-
pendence taken into account such that

E (xk xk−τ) = E (xk )E (xk−τ) .
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Estimating parameters can then be accomplished either with minimizing a cost func-
tion, or with an iterative algorithm, similarly to that seen with GKL, quickly converging to the
optimum value of that cost function. The PGKL objective function takes the form

JPGK L = trace
(
G>

q Cq Gq

)−1 (
G>

q Dq Gq

)
where Gq = Gq (θ) and Cq = Cq (µ). One approach to minimizing the objective function is
with the Levenberg–Marquardt algorithm. However, a simple iterative scheme, as for GKL,
may be formulated, which has similarly favorable convergence properties.

Suppose an initial value for θ and µ is available, let these be θ(1) and µ(1), respectively.
Then

θ(k+1), µ(k+1) = argmin
θ,µ

trace
(
G>

q,(k)Cq,(k)Gq,(k)

)−1 (
G>

q Dq Gq

)
trace

(
G>

q,(k)Cq,(k)Gq,(k)

)−1 (
G>

q Cq Gq

)
where Gq = Gq (θ), Gq,(k) = Gq (θ(k)), Cq = Cq (µ) and Cq,(k) = Cq (µ(k)) is a means of computing
the successor estimates θ(k+1) and µ(k+1) given θ(k) and µ(k). The resulting iterative scheme

argmin
θ,µ

θ>T>
((

G>
q,(k)Cq,(k)Gq,(k)

)−1 ⊗Dq

)
Tθ

θ>T>
((

G>
q,(k)Cq,(k)Gq,(k)

)−1 ⊗Cq (µ)

)
Tθ

where T is a sparse matrix of zeros and ones chosen such that vec(Gq ) = Tθ is a polynomial
eigenvector problem with matrix coefficients

Ψ(µ) = T> (
Q−µR1 −µ2R2 − . . .−µp Rp

)
T (4.15)

Q =
(
G>

q,(k)Cq,(k)Gq,(k)

)−1 ⊗Dq

R j =
(
G>

q,(k)Cq,(k)Gq,(k)

)−1 ⊗C( j )
q .

In order to obtain a solution to Ψ(µ), we need to solve the following optimization prob-
lem:

min µ

s.t. Ψ(µ)= 0

µ= 0.

The positive semi-definite constraint maintains the property that data originate from a co-
variance matrix, which is by definition always positive semi-definite, whereas the non-negativity
constraint eliminates those cases where the noise magnitude would be negative, which is not
feasible.

One way to simplify the problem is to apply linearization, thereby eliminating the poly-
nomial dependence in µ at the expense of increasing the size of coefficient matrices. A well-
known result [63] for linearizing the quadratic eigenvalue problem (QEP)

µ2M+µC+K
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is

A−µB

with

A =
[

0 W
−K −C

]
B =

[
W 0
0 M

]
where the choice W =−K yields a generalized eigenvalue problem with symmetric matrices
where the eigenvector has a special structure

w =
[

v
µv

]
.

Unfortunately, this simple approach does not generalize to matrix polynomial eigenvalue
problems (PEP) of higher order. However, a more elaborate and symmetry-preserving lin-
earization approach [6] transforms the above problem to

Ξ(µ) =Ξ1 −µΞ2

which expands for even p as

Ξ1 = diag

{[
0 I
I R1

]
,

[
0 I
I R3

]
, . . . ,

[
0 I
I Rp−1

]}
Ξ2 = diag

{
Q−1,

[ −R2 I
I 0

]
, . . . ,

[ −Rp−2 I
I 0

]
,−Rp

}
and for odd p as

Ξ1 = diag

{
Q,

[
0 I
I R2

]
,

[
0 I
I R4

]
, . . .

}
Ξ2 = diag

{[ −R1 I
I 0

]
,

[ −R3 I
I 0

]
, . . . , −Rp

}
where the operator diag aligns its arguments to bring forth a block diagonal matrix.

Ideally (provided that the matrix inequality constraint is sharp), this problem can be
solved using generalized eigenvalue problem, which is the linearized equivalent of solving
the original polynomial eigenvalue problem. As the linearized problem has eigenvectors w
of dimension mp rather than m, the true polynomial eigenvector that belongs to the eigen-
value µ becomes the column v of vecV = w of the linearized eigenvector Ξ1w = µΞ2w that
gives the smallest normalized residual, i.e.

v = argmin
v

∑
k

∣∣[Ψ(µ)v
]

k

∣∣∑
k |[v]k |

where [v]k is the kth component of the vector v.
Once an estimate for θ(n+1) has been computed, we can get g(n+1) by finding

argmin
g

∣∣fpar (g)−θ(n+1)
∣∣ .
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Figure 4.1: The first 100 samples of the investigated Mackey–Glass chaotic process.

Example 12. Consider a variant of the Mackey–Glass model for white blood cell production
(Figure 4.1), which is captured by the difference equation

x̄k+1 =−ax̄k +
bx̄k−τ

1+ x̄p
k−τ

that can be recast in an implicit, linearized form

x̄k+1x̄p
k−τ+ax̄k x̄p

k−τ+ x̄k+1 +ax̄k −bx̄k−τ = 0 (4.16)

where

x̄k = a if 05 k 5 τ

a = 0.75

b = 0.35

τ = 7

p = 3.

Investigating (4.16), we can identify five different nonlinear components. Even though
the components are nonlinear in terms of x̄k and its time-shifted versions x̄k+1 and x̄k−τ,
they are linear in the parameters a and b. In addition, there are five components but only
three parameters, whose sum of squares must add up to one to ensure independence of
scaling. This can be easily tackled by inserting a structural constraint matrix S in (4.15) that
enforces the equality of parameters of the respective components. Thus, a solution to

θ>Ψ(µ)θ = θ>S>T> (
Q−µR1 −µ2R2 − . . .−µp Rp

)
TSθ
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N = 5000
True PBCLS [43] PGKL

yk−1 1.5 1.500 ± 0.019 1.4998 ± 0.0039
yk−2 -0.7 -0.700 ± 0.018 -0.6998 ± 0.0035
uk−1 1.0 1.001 ± 0.023 0.9995 ± 0.0083
u2

k−1 -0.3 -0.286 ± 0.126 -0.3056 ± 0.0444
yk−1 yk−2 -0.05 -0.050 ± 0.003 -0.0501 ± 0.0015
uk−1 yk−1 0.1 0.094 ± 0.037 0.1010 ± 0.0129

N = 50000
True PBCLS [43] PGKL

yk−1 1.5 1.500 ± 0.006 1.4999 ± 0.0012
yk−2 -0.7 -0.700 ± 0.005 -0.7000 ± 0.0011
uk−1 1.0 1.000 ± 0.008 1.0002 ± 0.0029
u2

k−1 -0.3 -0.306 ± 0.042 -0.3041 ± 0.0136
yk−1 yk−2 -0.05 -0.050 ± 0.001 -0.0501 ± 0.0005
uk−1 yk−1 0.1 0.100 ± 0.012 0.1012 ± 0.0048

Table 4.1: Comparison of the polynomial bias-compensated least-squares (PBCLS) and the polyno-
mial generalized Koopmans–Levin (PGKL) methods.

where

S =
 0 1 0 1 0

0 0 0 0 1
1 0 1 0 0


yields the solution (normalized to the third component)

θ> = [
a b 1

]
.

♣
Example 13. Consider the dynamic system cast in a linear form given by the following dif-
ference equation [43]:

ȳk = 1.5ȳk−1 −0.7g2 ȳk−2 + ūk−1 −0.3ū2
k−1 −0.05g5 ȳk−1 ȳk−2 +0.1ūk−1 ȳk−1

Given noise magnitudes σ2
u = 0.001 and σ2

y = 0.01, and an input signal ū generated by

ūk −0.5ūk = ek +0.7ek−1

where ek is a uniformly distributed, white, zero-mean bounded sequence with |ek | < 0.112
resulting in |u0,k | < 0.370, we get signal-to-noise ratios of SNRu ≈ 11.2dB and SNRy ≈ 15.3dB
on input and output, respectively. Table 4.1 compares the performance of the polynomial
generalized Koopmans–Levin (PGKL) method with a model order of q = 4 to that of the poly-
nomial bias-compensated least-squares (PBCLS) method in 100 runs of a Monte-Carlo sim-
ulation with sample sizes of 5000 and 50000. The sample sizes have been chosen to match
those used in [43], the PGKL method could work reliably with smaller sample sizes.
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As seen in the table, PBCLS and PGKL give comparable results for linear terms yk−1, yk−2

and uk−1 as well as the term uk−1 yk−1 even though the variance of estimates given by PGKL is
smaller. However, for the quadratic term u2

k−1 PBCLS fails to give an accurate result since the
variance associated with its estimate is unacceptably high, while PGKL works reliably. ♣

Given the estimates θ̂ and µ̂ for a polynomial dynamic errors-in-variables system with a
relative distribution of noise ϕ between input and output (i.e. an input/output noise ratio),
we may introduce a measure of dissimilarity between the noise present in the data sample
and our noise model Cq =µC(ϕ)⊗Iq with our assumption ofϕ. Let dF (A,B) be the Frobenius
norm of A−B such that

dF (A,B) = ‖A−B‖
and dI S(A,B) be the Itakura–Saito divergence between matrices A and B such that

dI S(A,B) = trace
(
A−1B

)− logdet
(
A−1B

)
.

Then, the matrix divergence

d
(
G>

q (θ̂)Dq Gq (θ̂), G>
q (θ̂)Cq (µ̂)Gq (θ̂)

)
measures how close our noise model is to the noise in the observed data. A covariance
matching scheme over ϕ can then give an estimate for the relative noise distribution

ϕ= argmin
ϕ

d
(
G>

q (θ̂)Dq Gq (θ̂), G>
q (θ̂)Cq (µ̂)Gq (θ̂)

)
where the estimates θ̂ = θ̂(ϕ) and µ̂ = µ̂(ϕ) are computed for a particular ϕ by the PGKL

method.
Using the results discussed so far, we may sketch the outline of the polynomial extension

to the generalized Koopmans–Levin method with a covariance matching scheme as follows:

PGKL estimation method with noise covariance matching

1. Initialize with a relative distribution of noise ϕ between input and output.

2. Choose initial parameter and noise magnitude estimates θ(0) and µ(0) with a non-
iterative scheme (e.g. least squares).

3. Apply the PGKL iterative scheme to compute estimates θ̂ and µ̂ using

θ(k+1), µ(k+1) = argmin
θ,µ

θ>T>
((

G>
q,(k)Cq,(k)(ϕ)Gq,(k)

)−1 ⊗Dq

)
Tθ

θ>T>
((

G>
q,(k)Cq,(k)(ϕ)Gq,(k)

)−1 ⊗Cq (µ,ϕ)

)
Tθ

where Gq = Gq (θ), Gq,(k) = Gq
(
θ(k)

)
, Cq = Cq (µ) and Cq,(k) = Cq

(
µ(k)

)
, which reduces

to a polynomial eigenvalue problem

Ψ(µ)θ = 0.
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Figure 4.2: Discovering the input/output noise ratio using the Itakura–Saito matrix divergence.

mean ± deviation

ϕ̂ 72.4195 ± 0.9017
µ̂ 0.011052 ± 0.000238
σ̂2

u 0.001010 ± 0.000096
σ̂2

y 0.010042 ± 0.000266

Table 4.2: Mean and variance of noise parameters in a 100-run Monte-Carlo study.

4. Minimize the divergence d
(
G>

q (θ̂)Dq Gq (θ̂), G>
q (θ̂)Cq (µ̂)Gq (θ̂)

)
over ϕ.

Example 14. Consider the same system as in Example 13 but suppose the noise magnitudes
σ2

u = 0.001 and σ2
y = 0.01 are unknown. With σu = µcosϕ and σy = µsinϕ we get that the

relative input/output noise ratio ϕ? = 72.45◦ where ϕ? indicates true value. Varying the
unknown variable ϕ in a range between ϕ= 72◦ and ϕ= 74◦ with a step size of 0.05, we can
compute parameter estimates θ̂ for each angle ϕ. Given the parameter estimates, we may
evaluate the matrix divergence dI S for each ϕ and plot the error measure. Figure 4.2 graphs
the unit-normalized error measure against the angle ϕ. It is apparent that the estimated
value minimizes near the true value. ♣

Example 15. In order to assess the accuracy of noise parameter estimates, let us conduct a
Monte-Carlo simulation of 100 runs. Minimizing the distance measure dI S in each run, we
obtain estimates ϕ̂ and µ̂. Table 4.2 shows the mean values of ϕ̂ and µ̂ as well as σ̂2

u and σ̂2
y

with their respective standard deviations.
♣

4.3 Summary

Following our investigation of the parameter estimation problem in Chapter 2 and the struc-
ture discovery problem in Chapter 3, both for static systems, we ventured onto the field of
dynamic systems, where we considered discrete-time systems that can be re-cast in a linear

89



setting using a polynomial lifting function. With both the system input and output con-
taminated with noise, the identification problem that attempts to estimate model and noise
parameters is even more difficult than in the linear errors-in-variables case. Nevertheless,
combining the generalization of the Koopmans–Levin (GKL) method for linear dynamic sys-
tems, and the nonlinear extension to the Koopmans (NK) method for static systems, we have
seen that the polynomial generalized Koopmans–Levin (PGKL) can deliver better estimates
than other methods, inspired by the bias compensation and the least squares principle.

New contributions on the field of dynamic errors-in-variables systems include:

• an iterative algorithm that combines the GKL and the NK methods;

• applying a symmetric linearization of a polynomial eigenvalue problem to estimate
model parameters;

• a noise covariance matching scheme using matrix divergences to estimate noise pa-
rameters.
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CHAPTER

5
Applications

The errors-in-variables approach is frequently encountered in several fields where the goal
is reconstructing a model from a noisy point cloud. Notably, in the context of computer
vision and pattern recognition, an important sub-problem is parametric curve and surface
fitting. Our results in Chapter 2 are directly applicable to estimating parameters of quadratic
curves and surfaces at modest computational cost. The estimates obtained with the pro-
posed methods are close to those obtained with the maximum likelihood approach. On the
other hand, maximum likelihood estimation entails iterations and each iteration involves
projection to a nonlinear curve or surface, which are costly operations. The proposed meth-
ods, in contrast, are inexpensive to implement and they typically involve solving one or two
eigenvalue or singular value problems.

Taking a step further, a wide variety of problems from computer vision, such as motion
segmentation and face clustering on polygonal surfaces, involve data modeling by multiple
subspaces. In tracking-based motion segmentation, feature points are clustered according
to the different moving objects. Under the affine camera model, the vectors of feature point
coordinates corresponding to a moving rigid object lie on an affine subspace of dimension at
most three [19]. Thus, clustering different moving objects is equivalent to clustering different
affine subspaces. Similarly, in face clustering, it has been proved that the set of all images of
a Lambertian object under a variety of lighting conditions form a convex polyhedral cone
in the image space, and this cone can be accurately approximated by a low-dimensional
linear subspace of dimension at most 9 [8, 32]. The data modeling methods in Chapter 3
that operate with nonlinear manifolds can be applied in these contexts.

Self-organizing methods that autonomously discover a model from a set of (noisy) obser-
vations, such as the methods presented in Chapter 3, also facilitate geometric modeling. Re-
constructing a surface as the zero-set of a scalar-valued composite implicit function f (x) = 0
greatly simplifies constructive solid geometry (CSG) operations such as boolean union, dif-
ference and intersection. CSG operations are, in general, difficult to perform on boundary
representations (such as polygonal mesh surfaces) as one has to take precautions to en-
sure the compactness (“water-tightness”) of the resultant surface, which can be important in
manufacturing and engineering applications. On the contrary, these operations are straight-
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(a) noise-free model (b) noisy data source

Figure 5.1: Points extracted from the laser-scanned model of the Stanford Bunny.

forward on an implicit function representation, with no need for additional topological data
or consistency checks. For instance, let f1(x) = 0 and f2(x) = 0 be implicit function represen-
tations of two objects, then max

(
f1(x), f2(x)

)
defines the intersection, min

(
f1(x), f2(x)

)
the

union, provided that f (x) < 0 is the inside of the object. For a similar reason, containment
and collision detection are relatively easily performed on an implicit function representa-
tion. While common practice in implicit function reconstruction involves approximating
objects with spheres or cuboids, allowing a more general set of shapes that better fit the
original object leads to better approximation with possibly fewer parameters.

Figure 5.1 shows a data set comprising of points extracted from the laser-scanned model
of the Stanford Bunny1 [60], and the same data set polluted with Gaussian noise. Such a
large data set takes up considerable storage, fails to grasp structure and does not easily lend
itself to easy geometric manipulation. In contrast, the reconstructed model in Figure 5.2 that
comprises mostly of ellipsoids, occupies much less storage, helps understand composition
and structure, and allows geometric manipulation such as with CSG operators.

Finally, the system identification method in Chapter 4 is directly applicable to single-
input single-output systems especially where we seek a low-order polynomial representation
of a system under study. Most physical systems are inherently nonlinear and they are usually
approximated with linear models for a particular operating range. There has been, however,
a desire to extend techniques developed within the theoretical framework of linear systems
to handle nonlinear systems. While the class of nonlinear systems is rather broad as the
general term does not reflect the exact form of the nonlinearity manifested in the system, a
polynomial approximation is a common way to deal with a system governed by a nonlinear
function. The flexibility of polynomial models allows satisfactory approximation for many
nonlinear processes over wide ranges of operation, with higher polynomial degree better
approximating the original process. As a result, the use of such an approach increases the

1The Stanford Bunny is one of the most commonly used test models in computer graphics; it is a collection
of 69,451 triangles with 35,947 vertices, and it was assembled from range images of a clay bunny that is roughly
7.5 inches high. The points in Figure 5.1 have been obtained by discarding point connectivity information (i.e.
which point triplets form a triangle) and triangle surface normal vectors.
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Figure 5.2: Scattered points of the Stanford Bunny captured with at most quadratic 3D shapes.

accuracy of the models substantially as compared to the standard linear modeling approach
[54]. The method outlined in Chapter 4 alloys the benefit of increased flexibility of polyno-
mial models with the generalized system description the errors-in-variables approach offers
by treating both the input and the output sequence as data polluted with noise. Therefore,
the proposed method can be employed in a wide range of contexts where a linear model
would be inadequate but noise-free input data is not available either.

In order to facilitate integrating the proposed algorithms into future software, the thesis is
only complete with a reference implementation. MatLab source code with several examples
demonstrate the main points covered in the thesis, and provide a toolbox for solving uncon-
strained and constrained curve and surface fitting, clustering and dynamic system parame-
ter estimation problems. The implementation includes the nonlinear Koopmans estimator
for unconstrained fitting with matrix size reduction, as well as extensions to constrained
fitting of 2D shapes lines, circles, ellipsoids, parabolas, hyperbolas, and 3D shapes planes,
spheres, ellipsoids. For comparison, direct (non-iterative) methods and maximum likeli-
hood methods are available. For solving the clustering problem, various projection schemes
and (symmetric and asymmetric) spectral clustering methods are included in addition to
the iterative and non-iterative methods introduced in the thesis. Related to dynamic system
parameter estimation, both linear and polynomial methods are part of the implementation.
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CHAPTER

6
Conclusions

The thesis has covered estimation problems of errors-in-variables systems, with emphasis
on three important fields of research. First, the parametric estimation problem was inves-
tigated where data are assumed to be captured by a single nonlinear function, known up to
a few model parameters. Applying the noise cancellation principle, a new constrained esti-
mation approach was introduced for fitting several types of quadratic curves and surfaces.
Second, the fast and robust non-iterative unconstrained and constrained estimation meth-
ods introduced in Chapter 2 were applied in Chapter 3 to build a new clustering algorithm
that autonomously partitions a data set, comprising of several groups of points, each related
by a single parametric function. Finally, our focus shifted from static systems to dynamic sys-
tems in Chapter 4, where we saw how estimation methods for linear dynamic systems and
nonlinear static systems may be alloyed to construct an efficient model and noise parame-
ter estimation scheme. The new scientific contributions of the dissertation are summarized
below.

6.1 New contributions

Thesis 1. Fitting ellipses, parabolas, hyperbolas and ellipsoids with noise cancellation

I have proposed an errors-in-variables parameter estimation method fitting quadratic curves
and surfaces subject to constraints. The method incorporates a noise cancellation step in ex-
isting constrained quadratic least squares fitting algorithms. The noise cancellation step can
be written as a quadratic eigenvalue problem on symmetric matrices, where the eigenvalue
problem yields a data covariance matrix with noise distortions being accounted for, and may
be formulated without the statistically invariant terms in the data covariance matrix, leading
to a simpler expression. Operating on a noise-compensated data covariance matrix, direct el-
lipse-specific, parabola-specific, hyperbola-specific and ellipsoid-specific least squares fitting
exhibit substantially improved accuracy compared to their original formulation without noise
cancellation.
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The new errors-in-variables parameter estimation method for quadratic curves and surfaces
subject to constraints comprises of the following two major steps:

1. noise cancellation

2. constrained quadratic least squares fitting

The first major part of the algorithm is the noise cancellation scheme for general quadratic
curves and surfaces, which can be broken down into the following steps:

1. Input: noisy samples xi and the relative noise magnitude vector σ̄2
x for each dimension.

2. Estimate the data covariance matrix D from noisy samples.

3. Estimate the noise covariance matrix polynomial coefficients C1 and C2 from noisy
samples.

4. Compute the reduced-size matrices D?, C? and C?? by eliminating the statistically
invariant terms in D, C1 and C2.

5. Construct the matrix polynomialΨ?(µ) = D?−µC?−µ2C??.

6. Find the eigenvalue µ that solves det
(
Ψ?(µ)

)= 0.

7. Output: the noise-compensated (singular) matrix R? = D?−µC?−µ2C??.

The second major part is constrained fitting, which depends on the type of quadratic curve
or surface the constraint identifies.

The following algorithm summarizes the constrained estimation scheme for ellipses and hy-
perbolas:

1. Construct the reduced scatter matrix S by writing the Schur complement of the quad-
ratic terms in R?.

2. Solve the generalized eigenvalue problem Sg1 = λQ1g1 (or the corresponding singu-
lar value problem) for g1 with Q1 expressing the ellipse- and hyperbola-specific con-
straint.

3. Classify the eigenvectors g1,k based on the eigenvalue λk and the constraint value
g>

1,k Q1g1,k .

4. Recover the original parameter vector g.

The following algorithm summarizes parabola fitting:

1. Compute the eigenvector decomposition Sg1 = λg1 with S being the Schur comple-
ment of the quadratic terms in R?.

2. Based on g1 = v1 + sv2 + tv3, write the Lagrangian L (s, t ,α) =F (s, t )+αC (s, t ).

3. Solve the Lagrangian polynomial for α to recover the parameter vector g.
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The following algorithm summarizes the constrained estimation scheme for ellipsoids:

1. Construct the reduced scatter matrix S by writing the Schur complement of the quad-
ratic terms in R?.

2. Solve the generalized eigenvalue problem Sg1 = λQ1(k)g1 (or the corresponding sin-
gular value problem) for g1 with Q1(k) expressing the ellipsoid-specific constraint with
a large k = 4.

3. Use a bisection method on k until g1 identifies an ellipsoid.

4. Recover the original parameter vector g.

Thesis 2.1. Iterative algorithm for manifold clustering

I have generalized linear grouping algorithms [10, 64, 2, 1] for finding linear patterns in a
data set to a grouping algorithm fitting quadratic curves and surfaces. Alternating between
an update (parameter estimation) and an assignment (data mapping) step, the method can
discover a structural decomposition of data where members of each group are related by a
low-order (linear or quadratic) implicit polynomial function.

The outline of the proposed iterative grouping algorithm resembles the iterative algorithm
of the standard k-means procedure. The primary difference lies in the use of parameters
instead of mean values, and simple point-to-point distance (between cluster center and data
points) replaced with data point projection. As with the standard k-means algorithm, the
choice of initial data points affects convergence to an optimal solution.

1. Initialization. Choose k randomly chosen initial points xi with i = 1, . . . , k and for each
data point xi

a) start with an initial neighborhood N (xi ) around xi

b) estimate the parameters θi ,(0) that best capture points in N (xi )

c) enlarge N (xi ) by adding nearest-neighbor points

d) compute new estimates θi ,(n) and compare them to the estimates θi ,(n−1) ob-
tained in the previous iteration

e) repeat until the neighborhood N (xi ) cannot be enlarged without worsening the
accuracy of θi ,(n)

f) let θi be the best θi ,(n) that belongs to the optimum N (xi ) around xi

2. Initial grouping.

a) project each data point x j with j = 1, . . . , N to all candidate θi with i = 1, . . . , k

b) form initial groups Si with i = 1, . . . , k such that the distance is minimized.
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3. Alternating optimization.

a) Update step. Each group of data points Si is used to estimate new shape param-
eters θi .

b) Assignment step. Each data point x j is assigned to shapes θi it lies in the vicinity
of.

4. Finalization. Each data point is assigned to a single shape θi it lies closest to.

5. Re-sampling. Repeat the algorithm with different randomly chosen initial locations.

Thesis 2.2. Non-iterative algorithm for manifold clustering

I have proposed a clustering method fitting implicit polynomial functions that finds an ini-
tial segmentation without a preliminary assignment of data points. The clustering problem
is modeled with a complete directed weighted graph where the nodes are data points, and the
edge weights ai j are an affinity measure reflecting the distance between a data point i and
the curve or surface estimated from points in the neighborhood of the other point j . A best
weighted cut algorithm is applied to split the graph into k components, and thereby produce
an asymmetric spectral clustering of the data set with the given distance measure. The pro-
posed method surpasses other manifold clustering methods that do not explicitly incorporate
function fitting to data in clusters.

Grouping with spectral clustering addresses remedies the issue of wrongly chosen initial lo-
cations. Spectral clustering eliminates the need for re-sampling and provides a clustering
that is already close to an optimum solution.

1. Initialization. For each data point xi with i = 1, . . . , N and for each data point xi

a) start with an initial neighborhood N (xi ) around xi

b) estimate the parameters θi ,(0) that best capture points in N (xi )

c) enlarge N (xi ) by adding nearest-neighbor points

d) compute new estimates θi ,(n) and compare them to the estimates θi ,(n−1) ob-
tained in the previous iteration

e) repeat until the neighborhood N (xi ) cannot be enlarged without worsening the
accuracy of θi ,(n)

f) let θN (xi ) be the best θi ,(n) that belongs to the optimum N (xi ) around xi

2. Compute asymmetric distances. For each pair of data points xi and x j , obtain their
asymmetric distances

a) project xi to the manifold parametrized by θN (x j ) and calculate ai j

b) project x j to the manifold parametrized by θN (xi ) and calculate a j i

98



3. Asymmetric spectral clustering.

a) build an affinity matrix H = H (A) from asymmetric distances ai j where A = [
ai j

]
b) assign data points to groups based on the affinity matrix eigenvectors

Thesis 3. Iterative method to estimate parameters of dynamic polynomial systems

I have proposed the polynomial extension to the generalized Koopmans–Levin ( PGKL) estima-
tion method for dynamic systems by unifying the nonlinear Koopmans ( NK) method for static
polynomial systems with the generalized Koopmans–Levin ( GKL) method for linear dynamic
systems. The algorithm is formulated as an iterative procedure. I have demonstrated how a
generalized eigenvalue problem as used with the iterative approach of the GKL method ex-
tends to a polynomial eigenvalue problem if the errors can be modeled as Gaussian noise. I
have utilized a symmetric linearization of the polynomial eigenvalue problem to preserve the
symmetry present in the original problem and maintain numerical robustness. The PGKL es-
timation method assumes a known relative distribution of noise between system input and
output. I have shown how a noise covariance matching approach can estimate the relative
noise distribution if this parameter is unknown.

The outline of the polynomial extension to the generalized Koopmans–Levin method with a
covariance matching scheme is as follows:

1. Initialize with a relative distribution of noise ϕ between input and output.

2. Choose initial parameter and noise magnitude estimates θ(0) and µ(0) with a non-
iterative scheme (e.g. least squares).

3. Apply the PGKL iterative scheme to compute estimates θ̂ and µ̂ using

θ(k+1), µ(k+1) = argmin
θ,µ

θ>T>
((

G>
q,(k)Cq,(k)(ϕ)Gq,(k)

)−1 ⊗Dq

)
Tθ

θ>T>
((

G>
q,(k)Cq,(k)(ϕ)Gq,(k)

)−1 ⊗Cq (µ,ϕ)

)
Tθ

where Gq = Gq (θ), Gq,(k) = Gq
(
θ(k)

)
, Cq = Cq (µ) and Cq,(k) = Cq

(
µ(k)

)
, which reduces

to a polynomial eigenvalue problem

Ψ(µ)θ = 0.

4. Minimize the divergence d
(
G>

q (θ̂)Dq Gq (θ̂), G>
q (θ̂)Cq (µ̂)Gq (θ̂)

)
over ϕ.

6.2 Future work

We have seen that algorithms in Chapter 2 offer a computationally cheap alternative to con-
strained fitting; the grouping methods in Chapter 3 find a segmentation of a data set into
feasible partitions; and the parameter estimation method in Chapter 4 outperforms other
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algorithms in the field of dynamic errors-in-variables systems with polynomial nonlinear-
ities. Nonetheless, several open questions remain. The algorithms in Chapter 2 could be
extended to cover other quadratic curve and surface types beyond ellipses, parabolas, hy-
perbolas and ellipsoids. The grouping methods in Chapter 3 do not address how to choose
the number of groups to partition the data into, or how to deal with outliers any least-squares
minimizing method is sensitive to. Furthermore, the computational cost of the proposed al-
gorithms could be dramatically reduced by more strategic selection of points that generate
neighborhoods and employing incremental techniques to exploit the similarity of parame-
ter estimates obtained from the neighborhood of data points that are close to one another.
Finally, Chapter 4 involves calculations with large matrices, part of which could be omitted
without serious loss of computational accuracy. These issues motivate future research work.
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APPENDIX

A
Projection to quadratic curves and
surfaces

These sections present the full derivation of fast and reliable projection algorithms for el-
lipses [23], hyperbolas [14] and parabolas [14] in two dimensions and several types of quadrics
[14] in three dimensions.

A.1 Projection to an ellipse

Without loss of generality, we can assume the ellipse is in its canonical form, i.e. it is axis-
aligned and centered at the origin. If not, a transformation matrix M that axis-aligns and
centers the ellipse can be applied to the data points, and the inverse transformation matrix
M−1 to the computed foot points. Thus, let the ellipse be defined as

Q(x) = x2
1

a2
+ x2

2

b2
−1 = 0. (A.1)

Due to symmetry, it is enough to work in the first quadrant (i.e. for both data point coordi-
nates we have w1 > 0 and w2 > 0), in which case the projection point will also be in the first
quadrant (i.e. x1 > 0 and x2 > 0). Other points can be reflected to the first quadrant about the
axes, and then the projection point can be reflected back.

For the distance between a data point w = [
w1 w2

]
and a foot point x = [

x1 x2
]

to
be minimum, the distance vector must be normal to the ellipse, which means that the ellipse
gradient vector

1

2
∂xQ(x) = [ x1

a2
x2
b2

]
and the distance vector should be equal up to magnitude:

w1 −x1 = t∂x1Q(x) (A.2)

w2 −x2 = t∂x2Q(x)
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The above equations give

w1 −x1 = t
x1

a2

w2 −x2 = t
x2

b2

where t is a scalar where t < 0 for the inside and t > 0 for the outside of the ellipse. This
implies (after rearrangements) that

x1 = a2w1

t +a2
(A.3)

x2 = b2w2

t +b2

Substituting (A.3) into (A.1) yields

Q(t ) = 1

a2

(
a2w1

t +a2

)2

+ 1

b2

(
b2w2

t +b2

)2

−1

=
( aw1

t +a2

)2
+

(
bw2

t +b2

)2

−1.

which we need to solve for
Q(t ) = 0.

Differentiating w.r.t. t we get the first and second derivatives

d

d t
Q(t ) = − 2a2w 2

1(
t +a2

)3 − 2b2w 2
2(

t +b2
)3

d

d t 2
Q(t ) = 6a2w 2

1(
t +a2

)4 + 6b2w 2
2(

t +b2
)4 .

Since we operate in the first quadrant, we have the constraints t >−a2 and t >−b2. Assum-
ing, as usual, that a > b we get a single constraint t >−b2. Thus, on the domain (−b2, ∞) of
interest, we have

d

d t
Q(t ) < 0

d

d t 2
Q(t ) > 0

and

lim
t→−b2

Q(t ) = ∞
lim

t→∞Q(t ) = −1

making the function Q(t ) strictly monotonic decreasing and concave, therefore a unique root
t of Q(t ) must exist (Figure A.1).
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−1

−b2

Figure A.1: Projection function Q(t ) for an ellipse.

One way to find this root is using Newton’s method, which may be initialized [23] with

t0 = bw2 −b2

or for faster convergence [14] with

t0 = max
(
aw1 −a2, bw2 −b2) .

A.2 Projection to a hyperbola

As in the case of the ellipse, we assume the hyperbola is given in its canonical form

Q(x) = x2
1

a2
− x2

2

b2
−1 = 0 (A.4)

where, from symmetry, we may restrict our investigations to the first quadrant (i.e. for both
data point coordinates we have w1 > 0 and w2 > 0, and likewise for both projection point
coordinates x1 > 0 and x2 > 0). Orthogonality conditions (A.2), i.e. the hyperbola gradient
vector and the distance vector should be equal up to magnitude, yield

w1 −x1 = t
x1

a2

w2 −x2 = −t
x2

b2

from which we have

x1 = a2w1

t +a2
(A.5)

x2 = b2w2

−t +b2
.
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0

−a2 t∗ b2

(a)

0

−a2 t∗ b2

(b)

Figure A.2: Projection function Q(t ) for a hyperbola.

Substituting (A.5) into (A.4) we obtain the quadratic function

Q(t ) = 1

a2

(
a2w1

t +a2

)2

− 1

b2

(
b2w2

−t +b2

)2

−1

=
( aw1

t +a2

)2
−

(
bw2

−t +b2

)2

−1

where we seek Q(t ) = 0. Again, we can compute the derivatives

d

d t
Q(t ) = − 2a2w 2

1(
t +a2

)3 − 2b2w 2
2(−t +b2
)3

d

d t 2
Q(t ) = 6a2w 2

1(
t +a2

)4 − 6b2w 2
2(−t +b2
)4

and we note that our confinement to the first quadrant imposes the restriction −a2 < t < b2

with

lim
t→−a2

Q(t ) = ∞
lim

t→b2
Q(t ) = −∞.

From the above, we see that d
d t Q(t ) < 0 on the domain of interest and d

d t 2 Q(t ) decreases
from +∞ to −∞ and is monotonic. Therefore, Q(t ) has a unique inflection point t? within
the domain

(−a2, b2
)
, which we may calculate by equating the second derivative with zero,

which yields

t? = b2paw1 −a2
√

bw2p
aw1 +

√
bw2

.

The inflection point may either lie above the coordinate x axis, or may lie below (Fig-
ure A.2), and we must choose the initial location t0 carefully to ensure convergence for New-
ton’s method. When the inflection point lies above the coordinate x axis (Figure A.2a), we
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need Q(t0) < 0, in which case we may successively try values

tk = b2 − b2 − t?
2k

for k = 1, 2, . . . until we find a Q(tk ) < 0. When the inflection point lies below the x axis
(Figure A.2b), we may successively try values

tk =−a2 + t?+a2

2k

for k = 1, 2, . . . until we find a Q(tk ) > 0.

A.3 Projection to a parabola

Consider the canonical form of the parabola

x2
2 −2px1 = 0 (A.6)

where p > 0 is the distance from the focus to the directrix. Due to symmetry, we may restrict
the method to w2 > 0 when we also have x2 > 0. The orthogonality conditions (A.2) now give

w1 −x1 = −pt

w2 −x2 = y t

from which we have

x1 = w1 +pt (A.7)

x2 = w2

t +1
.

Since x1 > 0, we have constraint t >−1. Substituting (A.7) into (A.6) we obtain

Q(t ) = w 2
2

(t +1)2 −2pw1 −2p2t

whose root we need to find. Taking the derivatives,

d

d t
Q(t ) = − 2w 2

2

(t +1)3 −2p2

d

d t 2
Q(t ) = 6w 2

2

(t +1)4

and our restriction of the domain of interest imposes the restriction t >−1 with

lim
t→−1

Q(t ) = ∞
lim

t→∞Q(t ) = −∞.

Since we have d
d t Q(t ) < 0 and d

d t 2 Q(t ) > 0 on (−1, ∞), the function Q(t ) is monotonically
decreasing and concave (Figure A.3). Standard Newton’s method starting at any point t0

where Q(t0) > 0 will converge to the unique root of Q(t ). We can try points tk =−1+2−k for
k = 1, 2, . . . until we find a Q(tk ) > 0.
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Figure A.3: Projection function Q(t ) for a parabola.

A.4 Projection to an ellipsoid

With canonical coordinates, an ellipsoid is defined as

Q(x) = x2
1

a2
+ x2

2

b2
−1 = 0 (A.8)

where for the semi-axes we have a = b = c > 0. Due to symmetry, our investigation may be
restricted to w1 > 0, w2 > 0 and w3 > 0 for data points, and likewise x1 > 0, x2 > 0 and x3 > 0
for projection points. The orthogonality conditions give

w1 −x1 = t
x1

a2

w2 −x2 = t
x2

b2

w3 −x3 = t
x3

c2

from which we have

x1 = a2w1

t +a2
(A.9)

x2 = b2w2

t +b2

x3 = c2w3

t + c2
.

Since we are confined to the first quadrant, t > max
(−a2, −b2, −c2

)=−c2. Substituting (A.9)
into (A.8) we get

Q(t ) =
( aw1

t +a2

)2
+

(
bw2

t +b2

)2

+
( cw3

t + c2

)2
−1
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for which we seek Q(t ) = 0. Calculating the derivatives,

d

d t
Q(t ) = − 2a2w 2

1(
t +a2

)3 − 2b2w 2
2(

t +b2
)3 − 2c2w 2

3(
c2 + t

)3

d

d t 2
Q(t ) = 6a2w 2

1(
t +a2

)4 + 6b2w 2
2(

t +b2
)4 + 6c2w 2

3(
t + c2

)4

and inspecting behavior in the domain of interest
(−c2, ∞)

, we find that the function Q(t )
is monotonically decreasing and concave. Starting Newton’s method at any point t0 where
Q(t0) > 0, specifically

t0 = max
(
aw1 −a2, bw2 −b2, cw3 − c2)

will converge to the unique solution.

A.5 Projection to an elliptic paraboloid

Canonical coordinates for an elliptic paraboloid

Q(x) = x2
1

a2
+ x2

2

b2
−x3 = 0 (A.10)

and a restriction to w1 > 0 and w2 > 0, when we also have x1 > 0 and x2 > 0, produces from
the orthogonality conditions (A.2) the set of equations

w1 −x1 = t
x1

a2

w2 −x2 = t
x2

b2

w3 −x3 = − t

2

from which we get

x1 = a2w1

t +a2
(A.11)

x2 = b2w2

t +b2

x3 = w3 + t

2

where from our assumptions x1 > 0 and x2 > 0 we have the constraint t > max
(−a2, −b2

) =
−b2. Substituting (A.11) into (A.10) we obtain the function

Q(t ) = a2w 2
1(

t +a2
)2 + b2w 2

2(
t +b2

)2 −w3 − t

2
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whose root we seek. Calculating the derivatives

d

d t
Q(t ) = − 2a2w 2

1(
a2 + t

)3 − 2b2w 2
2(

b2 + t
)3 − 1

2

d

d t 2
Q(t ) = 6a2w 2

1(
a2 + t

)4 + 6b2w 2
2(

b2 + t
)4

and inspecting the behavior in the domain
(−b2, ∞)

, we see that d
d t Q(t ) < 0 and d

d t 2 Q(t ) > 0,
making the function Q(t ) monotonically decreasing and concave, with a graph similar to that
shown in Figure A.3. Starting Newton’s method at any point t0 where Q(t0) > 0 will converge
to the unique solution.

A.6 Projection to a hyperbolic paraboloid

Canonical coordinates for a hyperbolic paraboloid (saddle surface)

Q(x) = x2
1

a2
− x2

2

b2
−x3 = 0 (A.12)

and a restriction to w1 > 0 and w2 > 0, when we also have x1 > 0 and x2 > 0, produces from
the orthogonality conditions (A.2) the set of equations

w1 −x1 = t
x1

a2

w2 −x2 = −t
x2

b2

w3 −x3 = − t

2
from which we get

x1 = a2w1

t +a2
(A.13)

x2 = b2w2

−t +b2

x3 = w3 + t

2

where from our assumptions x1 > 0 and x2 > 0 we have the constraints −a2 < t < b2. Substi-
tuting (A.13) into (A.12) we obtain the function

Q(t ) = a2w 2
1(

t +a2
)2 − b2w 2

2(−t +b2
)2 −w3 − t

2

whose root we seek. Calculating the derivatives

d

d t
Q(t ) = − 2a2w 2

1(
t +a2

)3 − 2b2w 2
2(−t +b2
)3 − 1

2

d

d t 2
Q(t ) = 6a2w 2

1(
t +a2

)4 − 6b2w 2
2(

t −b2
)4
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and inspecting the behavior in the domain
(−a2, b2

)
, we see that d

d t Q(t ) < 0 and d
d t 2 Q(t )

decreases from +∞ (near −a2) to −∞ (near b2), and is monotonic, making Q(t ) have a single
inflection point. A similar reasoning as used for hyperbolas in Section A.2 yields the unique
solution.

A.7 Projection to a hyperboloid of one sheet

Finally, let us project a point (w1; w2; w3) onto a hyperboloid of one sheet defined in its
canonical coordinates as

Q(x) = x2
1

a2
+ x2

2

b2
− x2

3

c2
−1 = 0 (A.14)

where we can assume a ≥ b. Due to symmetry, the method is restricted to w1 > 0, w2 > 0 and
w3 > 0 when we also have x1 > 0, x2 > 0 and x3 > 0. The orthogonality conditions (A.2) now
give

w1 −x1 = t
x1

a2

w2 −x2 = t
x2

b2

w3 −x3 = −t
x3

c2

for some scalar t from which

x1 = a2w1

t +a2
(A.15)

x2 = b2w2

t +b2

x3 = c2w3

−t + c2
.

Since x1 > 0, x2 > 0 and x3 > 0, we have constraints −b2 < t < c2. Substituting (A.15) into
(A.14) we obtain a function and its derivatives

Q(t ) = a2w 2
1

(t +a2)2
+ b2w 2

2

(t +b2)2
− c2w 2

3

(−t + c2)2
−1

d

d t
Q(t ) = − 2a2w 2

1(
a2 + t

)3 − 2b2w 2
2(

b2 + t
)3 + 2c2w 2

3(
t − c2

)3

d

d t 2
Q(t ) = 6a2w 2

1(
a2 + t

)4 + 6b2w 2
2(

b2 + t
)4 − 6c2w 2

3(
t − c2

)4

whose root we need to find.
Again, as before, d

d t 2 Q(t ) decreases from +∞ (near −b2) to −∞ (near c2), and it is mono-

tonic because d
d t 3 Q(t ) < 0, as one can easily verify. Thus, Q(t ) has a unique inflection point

t?, within the interval
(−b2, c2

)
, its graph looks like one of those shown in Figure (A.2). Un-

fortunately, it is not easy to determine whether the inflection point t? > 0 (Figure A.2a) or
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t? < 0 (Figure A.2b) because we cannot solve the equation d
d t 2 Q(t ) = 0. However, one of the

two iterative procedures described in the case of hyperbolas, i.e. Newton’s method starting
from the left or from the right, must work. Thus, we simply can choose one of the two pro-
cedures at random hoping that it converges. If it fails, i.e. if an iteration lands outside the
interval

(−b2, c2
)
, then we can switch to the other procedure, and it will surely converge.

However, even if we start on the wrong side, Newton’s iteration may land on the right side
and then subsequently converge.
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